Главная - Антивирусы
2 критерия. Проверка гипотезы о независимости логарифмической доходности

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Статистический критерий

Правило, по которому гипотеза Я 0 отвергается или принимается, называется статистическим критерием. В названии критерия, как правило, содержится буква, которой обозначается специально составленная характеристика из п. 2 алгоритма проверки статистической гипотезы (см. п. 4.1), рассчитываемая в критерии. В условиях данного алгоритма критерий назывался бы «в -критерий».

При проверке статистических гипотез возможны два типа ошибок:

  • - ошибка первого рода (можно отвергнуть гипотезу Я 0 , когда она на самом деле верна);
  • - ошибка второго рода (можно принять гипотезу Я 0 , когда она на самом деле не верна).

Вероятность а допустить ошибку первого рода называется уровнем значимости критерия.

Если за р обозначить вероятность допустить ошибку второго рода, то (l - р) - вероятность не допустить ошибку второго рода, которая называется мощностью критерия.

Критерий согласия х 2 Пирсона

Существует несколько типов статистических гипотез:

  • - о законе распределения;
  • - однородности выборок;
  • - численных значениях параметров распределения и т.д.

Мы будем рассматривать гипотезу о законе распределения на примере критерия согласия х 2 Пирсона.

Критерием согласия называют статистический критерий проверки нулевой гипотезы о предполагаемом законе неизвестного распределения.

В основе критерия согласия Пирсона лежит сравнение эмпирических (наблюдаемых) и теоретических частот наблюдений, вычисленных в предположении определенного закона распределения. Гипотеза # 0 здесь формулируется так: по исследуемому признаку генеральная совокупность распределена нормально.

Алгоритм проверки статистической гипотезы # 0 для критерия х 1 Пирсона:

  • 1) выдвигаем гипотезу Я 0 - по исследуемому признаку генеральная совокупность распределена нормально;
  • 2) вычисляем выборочную среднюю и выборочное среднее квадратическое отклонение о в;

3) по имеющейся выборке объема п рассчитываем специально составленную характеристику ,

где: я, - эмпирические частоты, - теоретические частоты,

п - объем выборки,

h - величина интервала (разность между двумя соседними вариантами),

Нормализованные значения наблюдаемого признака,

- табличная функция. Также теоретические частоты

могут быть вычислены с помощью стандартной функции MS Excel НОРМРАСП по формуле ;

4) по выборочному распределению определяем критическое значение специально составленной характеристики xl P

5) при гипотеза # 0 отвергается, при гипотеза # 0 принимается.

Пример. Рассмотрим признак X - величину показателей тестирования осужденных в одной из исправительных колоний по некоторой психологической характеристике, представленный в виде вариационного ряда:

На уровне значимости 0,05 проверить гипотезу о нормальном распределении генеральной совокупности.

1. На основе эмпирического распределения можно выдвинуть гипотезу Н 0 : по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осу-

жденных распределена нормально. Альтернативная гипотеза 1: по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осужденных не распределена нормально.

2. Вычислим числовые выборочные характеристики:

Интервалы

х г щ

х} щ

3. Вычислим специально составленную характеристику j 2 . Для этого в предпоследнем столбце предыдущей таблицы найдем теоретические частоты по формуле , а в последнем столбце

проведем расчет характеристики % 2 . Получаем х 2 = 0,185.

Для наглядности построим полигон эмпирического распределения и нормальную кривую по теоретическим частотам (рис. 6).

Рис. 6.

4. Определим число степеней свободы s : к = 5, т = 2, s = 5-2-1 = 2.

По таблице или с помощью стандартной функции MS Excel «ХИ20БР» для числа степеней свободы 5 = 2 и уровня значимости а = 0,05 найдем критическое значение критерия xl P . =5,99. Для уровня значимости а = 0,01 критическое значение критерия х%. = 9,2.

5. Наблюдаемое значение критерия х =0,185 меньше всех найденных значений Хк Р.-> поэтому гипотеза Я 0 принимается на обоих уровнях значимости. Расхождение эмпирических и теоретических частот незначимое. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности. Таким образом, по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осужденных распределена нормально.

  • 1. Корячко А.В., Куличенко А.Г. Высшая математика и математические методы в психологии: руководство к практическим занятиям для слушателей психологического факультета. Рязань, 1994.
  • 2. Наследов А.Д. Математические методы психологического исследования. Анализ и интерпретация данных: Учеб, пособие. СПб., 2008.
  • 3. Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2010.
  • 4. Сошникова Л.А. и др. Многомерный статистический анализ в экономике: Учеб, пособие для вузов. М., 1999.
  • 5. Суходольский Е.В. Математические методы в психологии. Харьков, 2004.
  • 6. Шмойлова Р.А., Минашкин В.Е., Садовникова Н.А. Практикум по теории статистики: Учеб, пособие. М., 2009.
  • Гмурман В.Е. Теория вероятностей и математическая статистика. С. 465.
Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) A B A + B
Фактор риска отсутствует (0) C D C + D
Всего A + C B + D A + B + C + D

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

  1. Рассчитываем ожидаемые значения для каждой ячейки:
  2. Находим значение критерия хи-квадрат Пирсона:

    χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

  3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
  4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

ОПР. Эмпирическими частотами называются фактически наблюдаемые частоты.

ПРОВЕРКА ГИПОТЕЗЫ О РАСПРЕДЕЛЕНИИ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ. КРИТЕРИЙ ПИРСОНА

Как отмечалось раньше, предположение о виде распределения может быть выдвинуто исходя из теоретических предпосылок. Однако, как бы хорошо ни был подобран теоретический закон распределения, между эмпирическим и теоретическим распределениями неизбежны расхождения. Естественно возникает вопрос: объясняются ли эти расхождения только случайными обстоятельствами, связанными с ограниченным числом наблюдений, или они являются существенными и связаны с тем, что теоретический закон распределения подобран неудачно. Для ответа на этот вопрос и служит критерий согласия, т.е.

ОПР. Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Для каждого критерия, т.е. соответствующего распределения, обычно составлены таблицы, по которым находят k кр (см. приложения). После того как критическая точка найдена, по данным выборки вычисляют наблюдаемое значение критерия К набл. Если К набл > k кр, то нулевую гипотезу отвергают, если наоборот, то принимают.

Опишем применение критерия Пирсона к проверке гипотезы о нормальном распределении генеральной совокупности. Критерий Пирсона отвечает на вопрос о том, случайно ил расхождение эмпирических и теоретических частот?

Критерий Пирсона, как и любой критерий не доказывает справедливость гипотезы, а лишь устанавливает, на принятом уровне значимости, ее согласие или несогласие с данными наблюдений.

Итак, пусть по выборке объема п получено эмпирическое распределение. При уровне значимости a требуется проверить нулевую гипотезу: генеральная совокупность распределена нормально.

В качестве критерия проверки нулевой гипотезы принимают случайную величину c 2 = , где - эмпирические частоты; - теоретические частоты.

Данная СВ имеет c 2 – распределение с k - степенями свободы. Число степеней свободы находят по равенству k=m –r -1, m – число частичных интервалов выборки; r – число параметров распределения. Для нормального распределения r=2 (а и s), тогда k=m –3.

Для того чтобы при заданном уровне значимости, проверить нулевую гипотезу: генеральная совокупность распределена нормально, надо:

1.Вычислить выборочную среднюю и выборочное среднее квадратическое отклонение.

2.Вычислить теоретические частоты ,

где п – объем выборки; h – шаг(разность между двумя соседними вариантами); ; значения функции смотрят по приложению.

3. Сравнивают эмпирические и теоретические частоты с помощью критерия Пирсона. Для этого:



а) находят наблюдаемое значение критерия ;

б) по таблице критических точек распределения c 2 , по заданному уровню значимости a и числу степеней свободы k находят критическую точку .

Если < - нет оснований отвергнуть нулевую гипотезу. Если > - нулевую гипотезу отвергают.

Замечание. Малочисленные частоты ( <5) следует объединить; в этом случае и соответствующие им теоретические частоты также надо сложить. Если производилось объединение частот, то при определении числа степеней свободы следует в качестве m принять число групп выборки, оставшихся после объединения частот.

Назначения критерия

Критерий χ 2 применяется в двух целях;

1) для сопоставления эмпирического распределения признака с теоре­тическим - равномерным, нормальным или каким-то иным;

2) для сопоставления двух, трех или более эмпирических распределе­ний одного и того же признака 12 .

Описание критерия

Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях.

Преимущество метода состоит в том, что он позволяет сопостав­лять распределения признаков, представленных в любой шкале, начиная от шкалы наименований (см. п. 1.2). В самом простом случае альтерна­тивного распределения "да - нет", "допустил брак - не допустил бра­ка", "решил задачу - не решил задачу" и т. п. мы уже можем приме­нить критерий χ 2 .

Допустим, некий наблюдатель фиксирует количество пешеходов, выбравших правую или левую из двух симметричных дорожек на пути из точки А в точку Б (см. Рис. 4.3).

Допустим, в результате 70 наблюдений установлено, что Э\ чело­век выбрали правую дорожку, и лишь 19 - левую. С помощью критерия χ 2 мы можем определить, отличается ли данное распределение выборов от равномерного распределения, при котором обе дорожки выбирались бы с одинаковой частотой. Это вариант сопоставления полученного эм­ пирического распределения с теоретическим. Такая задача может сто­ять, например, в прикладных психологических исследованиях, связанных с проектированием в архитектуре, системах сообщения и др.

Но представим себе, что наблюдатель решает совершенно другую задачу: он занят проблемами билатерального регулирования. Совпадение полученного распределения с равномерным его интересует гораздо в меньшей степени, чем совпадение или несовпадение его данных с дан­ными других исследователей. Ему известно, что люди с преобладанием правой ноги склонны делать круг против часовой стрелки, а люди с преобладанием левой ноги - круг по ходу часовой стрелки, и что в ис­следовании коллег 13 преобладание левой ноги было обнаружено у 26 человек из 100 обследованных.

С помощью метода χ 2 он может сопоставить два эмпирических распределения: соотношение 51:19 в собственной выборке и соотноше­ние 74:26 в выборке других исследователей.

Это вариант сопоставления двух эмпирических распределений по простейшему альтернативному признаку (конечно, простейшему с математической точки зрения, а отнюдь не психологической).

Аналогичным образом мы можем сопоставлять распределения выборов из трех и более альтернатив. Например, если в выборке из 50 человек 30 выбрали ответ (а), 15 человек - ответ (б) и 5 человек -ответ (в), то мы можем с помощью метода χ 2 проверить, отличается ли это распределение от равномерного распределения или от распределения ответов в другой выборке, где ответ (а) выбрали 10 человек, ответ (б) -25 человек, ответ (в) - 15 человек.

В тех случаях, если признак измеряется количественно, скажем, в баллах, секундах или миллиметрах, нам, быть может, придется объединить все обилие значений признака в несколько разрядов. Например, если время решения задачи варьирует от 10 до 300 секунд, то мы можем ввести 10 или 5 разрядов, в зависимости от объема выборки. На­пример, это будут разряды: 0-50 секунд; 51-100 секунд; 101-150 секунд, и т. д. Затем мы с помощью метода χ 2 будет сопоставлять частоты встречаемости разных разрядов признака, но в остальном принципиаль­ная схема не меняется.

При сопоставлении эмпирического распределения с теоретическим мы определяем степень расхождения между эмпирическими и теорети­ческими частотами.

При сопоставлении двух эмпирических распределений мы опреде­ляем степень расхождения между эмпирическими частотами и теорети­ческими частотами, которые наблюдались бы в случае совпадения двух этих эмпирических распределений. Формулы расчета теоретических час­тот будут специально даны для каждого варианта сопоставлений.

Чем больше расхождение между двумя сопоставляемыми распре­делениями, тем больше эмпирическое значение у}.

Гипотезы

Возможны несколько вариантов гипотез, в зависимости от задач,

которые мы перед собой ставим.

Первый вариант:

Н 0: Полученное эмпирическое распределение признака не отличается от теоретического (например, равномерного) распределения.

Н 1: Полученное эмпирическое распределение признака отличается от теоретического распределения.

Второй вариант:

Н 0: Эмпирическое распределение 1 не отличается от эмпирического распределения 2.

Н 1: Эмпирическое распределение 1 отличается от эмпирического рас­пределения 2.

Третий вариант:

Н 0: Эмпирические распределения 1, 2, 3, ... не различаются между собой.

Н 1: Эмпирические распределения 1, 2, 3, ... различаются между собой.

Критерий χ 2 позволяет проверить все три варианта гипотез.

Графическое представление критерия

Проиллюстрируем пример с выбором правой или левой дорожек на пути из точки А в точку Б. На Рис. 4.4 частота выбора левой до­рожки представлена левым столбиком, а частота выбора правой дорож­ки - правым столбиком гистограммы 14 . На оси ординат отмеряются от­носительные частоты выбора, то есть частоты выбора той или иной до­рожки, отнесенные к общему количеству наблюдений. Для левой дорожки относительная частота, которая называется также частостью, составляет 19/70, то есть 0,27, а для правой дорожки 51/70, то есть 0,73.

Если бы обе дорожки выбирались равновероятно, то половина испытуемых выбрала бы правую дорожку, а половина - левую. Вероят­ность выбора каждой из дорожек составляла бы 0,50.

Мы видим, что отклонения эмпирических частот от этой величи­ны довольно значительны. Возможно, различия между эмпирическим и теоретическим распределением окажутся достоверными.

На Рис. 4.5 фактически представлены две гистограммы, но столбики сгруппированы так, что слева сопоставляются частоты предпочте­ния левой дорожки в выборе нашего наблюдателя (1) и в выборке Т.А. Доброхотовой и Н.Н. Брагиной (2), а справа - частоты предпочтения правой дорожки в этих же двух выборках.

Мы видим, что расхождения между выборками очень незначительны. Критерий χ2, скорей всего, подтвердит совпадение двух распределений.

Ограничения критерия

1.Объем выборки должен быть достаточно большим: п 30. При п <30 критерий χ2 дает весьма приближенные значения. Точность крите­рия повышается при больших п .

2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: f > 5. Это означает, что если число разрядов задано зара­нее и не может быть изменено, то мы не можем применять метод χ2, не накопив определенного минимального числа наблюдений. Ес­ли, например, мы хотим проверить наши предположения о том, что частота обращений в телефонную службу Доверия неравномерно распределяются по 7 дням недели, то нам потребуется 5*7=35 обращений. Таким образом, если количество разрядов (k ) задано заранее, как в данном случае, минимальное число наблюдений (n min ) определяется по формуле: n min =k *5.

3. Выбранные разряды должны "вычерпывать" все распределение, то есть охватывать весь диапазон вариативности признаков. При этом группировка на разряды должна быть одинаковой во всех сопостав­ляемых распределениях.

4. Необходимо вносить "поправку на непрерывность" при сопоставле­нии распределений признаков, которые принимают всего 2 значения. При внесении поправки значение χ 2 уменьшается (см. Пример с по­ правкой на непрерывность).

5. Разряды должны быть неперекрещивающимися: если наблюдение отнесено к одному разряду, то оно уже не может быть отнесено ни к какому другому разряду.

Сумма наблюдений по разрядам всегда должна быть равна общему количеству наблюдений.

Правомерен вопрос о том, что считать числом наблюдений - количество выбо­ров, реакций, действий или количество испытуемых, которые совершают выбор, проявляют реакции или производят действия. Если испытуемый проявляет не­сколько реакций, и все они регистрируются, то количество испытуемых не будет совпадать с количеством реакций. Мы можем просуммировать реакции каждого испытуемого, как, например, это делается в методике Хекхаузена для исследования мотивации достижения или в Тесте фрустрационной толерантности С. Розенцвейга, и сравнивать распределения индивидуальных сумм реакций в нескольких выборках.

В этом случае числом наблюдений будет количество испытуемых. Если же мы подсчитываем частоту реакций определенного типа в целом по выборке, то получа­ем распределение реакций разного типа, и в этом случае количеством наблюдений будет общее количество зарегистрированных реакций, а не количество испытуемых.

С математической точки зрения правило независимости разрядов соблюдается в обоих случаях: одно наблюдение относится к одному и только одному разряду распределения.

Можно представить себе и такой вариант исследования, где мы изучаем рас­пределение выборов одного испытуемого. В когнитивно-бихевиоральной терапии, например, клиенту предлагается всякий раз фиксировать точной время появления нежелательной реакции, например, приступов страха, депрессии, вспышек гнева, самоуничижающих мыслей и т. п. В дальнейшем психотерапевт анализирует полу­ченные данные, выявляя часы, в которые неблагоприятные симптомы проявляются чаще, и помогает клиенту строить индивидуальную программу предупреждения неблагоприятных реакций.

Можно ли с помощью критерия χ2 доказать, что некоторые часы являются в этом индивидуальном распределении более часто встречающимися, а другие - ме­нее часто встречающимися? Все наблюдения - зависимы, так как они относятся к одному и тому же испытуемому; в то же время все разряды - неперекрещивающиеся, так как один и тот же приступ относится к одному и только одному разря­ду (в данном случае - часу дня). По-видимому, применение метода χ2 будет в данном случае некоторым упрощением. Приступы страха, гнева или депрессии могут наступать неоднократно в течение дня, и может оказаться так, что, скажем, ранний утренний, 6-часовой, и поздний вечерний, 12-часовой, приступы обычно появляются вместе, в один и тот же день: в то же время дневной 3-часовой при­ступ появляется не ранее как через сутки после предыдущего приступа и не менее чем за двое суток до следующего и т. п. По-видимому, речь здесь может идти о сложной математической модели или вообще о чем-то таком, чего нельзя "поверить алгеброй". И тем не менее в практических целях может оказаться полезным ис­пользовать критерий для того, чтобы выявить систематическую неравномерность наступления каких-либо значимых событий, выбора, предпочтений и т. п. у одного и того же человека.

Итак, одно и то же наблюдение должно относиться только к одному разряду. Но считать ли наблюдением каждого испытуемого или каждую исследуемую реак­цию испытуемого - вопрос, решение которого зависит от целей исследования (см.. напр., Ганзен В.А., Балин В.Д., 1991, с.10).

Главное же "ограничение" критерия χ 2 - то, что он кажется большинству исследователей пугающе сложным.

Попытаемся преодолеть миф о непостижимой трудности критерия χ 2 . Чтобы оживить изложение, рассмотрим шутливый литературный пример.

Рассмотренный выше метод хорошо работает, если качественный признак, который нас интересует, принимает два значения (тромбоз есть - нет, марсианин зеленый - розовый). Более того, поскольку метод является прямым аналогом критерия Стьюдента, число сравниваемых выборок также должно быть равно двум.

Понятно, что и число значений признака и число выборок может оказаться большим двух. Для анализа таких случаев нужен иной метод аналогичный дисперсионному анализу. С виду этот метод, который мы сейчас изложим, сильно отличается от критерия z, но на самом деле между ними много общего.

Чтоб не ходить далеко за примером начнем с только что разобранной задачи о тромбозе шунтов. Теперь мы будем рассматривать не долю, а число больных с тромбозом. Занесем результаты испытания в таблицу (табл. 5.1). Для каждой из групп укажем число больных с тромбозом и без тромбоза. У нас два признака: препарат (аспирин-плацебо) и тромбоз (есть-нет); в таблице указаны все их возможные сочетания, поэтому такая таблица называется таблицей сопряженности. В данном случае размер таблицы 2x2.

Посмотрим на клетки расположенные, на диагонали идущей из верхнего левого в нижний правый угол. Числа в них заметно больше чисел в других клетках таблицы. Это наводит на мысль о связи между приемом аспирина и риском тромбоза.

Теперь взглянем на табл. 5.2. Это таблица ожидаемых чисел, которые мы получили бы, если бы аспирин не влиял на риск тромбоза. Как рассчитать ожидаемые числа, мы разберем чуть ниже, а пока обратим внимание на внешние особенности таблицы. Кроме немного пугающих дробных чисел в клетках можно заметить еще одно отличие от табл. 5.1 - это суммарные данные по группам в правом столбце и по тромбозам - в нижней строке. В правом нижнем углу - общее число больных в испытании. Об-



ратите внимание, что, хотя числа в клетках на рис. 5.1 и 5.2 разные, суммы по строкам и по столбцам одинаковы.

Как же рассчитать ожидаемые числа? Плацебо получали 25 человек, аспирин - 19. Тромбоз шунта произошел у 24 из 44 обследованных, то есть в 54,55% случаев не произошел - у 20 из 44, то есть в 45,45% случаев. Примем нулевую гипотезу о том, что аспирин не влияет на риск тромбоза. Тогда тромбоз должен с равной частотой 54,55% наблюдаться в группах плацебо и аспирина. Рассчитав, сколько составляет 54,55% от 25 и 19, получим соответственно 13,64 и 10,36. Это и есть ожидаемые числа больных с тромбозом в группах плацебо и аспирина. Таким же образом можно получить ожидаемые числа больных без тромбоза в группе плацебо - 45,45% от 25, то есть 11,36 в группе аспирина - 45,45% от 19, то есть 8,64. Обратите внимание, что ожидаемые числа рассчитываются до второго знака после запятой - такая точность понадобится при дальнейших вычислениях.

Сравним табл. 5.1 и 5.2. Числа в клетках довольно сильно различаются. Следовательно, реальная картина отличается от той, которая наблюдалась бы, если бы аспирин не оказывал влияния на риск тромбоза. Теперь осталось построить критерий, который бы характеризовал эти различия одним числом, и затем найти его критическое значение, - то есть поступить, так как в случае критериев F, t или z.

Однако сначала вспомним еще один уже знакомый нам при-




мер - работу Конахана по сравнению галотана и морфина, а именно ту часть, где сравнивалась операционная летальность. Соответствующие данные приведены в табл. 5.3. Форма таблицы такая же, что и табл. 5.1. В свою очередь табл. 5.4 подобно табл. 5.2 содержит ожидаемые числа, то есть числа, вычисленные исходя из предположения, что летальность не зависит от анестетика. Из всех 128 оперированных в живых осталось 110, то есть 85,94%. Если бы выбор анестезии не оказывал влияния на летальность то в обеих группах доля выживших была бы такой же и число выживших составило бы в группе галотана - 85,94% от 61, то есть 52,42 в группе морфина - 85,94% от 67, то есть 57,58. Таким же образом можно получить и ожидаемые числа умерших. Сравним таблицы 5.3 и 5.4. В отличие от предыдущего примера, различия между ожидаемыми и наблюдаемыми значениями очень малы. Как мы выяснили раньше, различий в летальности нет. Похоже мы на правильном пути.

Критерии х2 для таблицы 2x2

Критерий х2 (читается «хи-квадрат») не требует никаких предположений относительно параметров совокупности, из которой извлечены выборки, - это первый из непараметрических критериев, с которым мы знакомимся. Займемся его построением. Во-первых, как и всегда, критерий должен давать одно число,


которое служило бы мерой отличия наблюдаемых данных от ожидаемых, то есть в данном случае различия между таблицей наблюдаемых и ожидаемых чисел. Во-вторых критерий должен учитывать, что различие, скажем, в одного больного имеет большее значение при малом ожидаемом числе, чем при большом.

Определим критерий х2 следующим образом:

где О - наблюдаемое число в клетке таблицы сопряженности, Е - ожидаемое число в той же клетке. Суммирование проводится по всем клеткам таблицы. Как видно из формулы, чем больше разница наблюдаемого и ожидаемого числа, тем больший вклад вносит клетка в величину %2. При этом клетки с малым ожидаемым числом вносят больший вклад. Таким образом, критерий удовлетворяет обоим требованиям - во-первых, измеряет различия и, во-вторых, учитывает их величину относительно ожидаемых чисел.

Применим критерии х2 к данным по тромбозам шунта. В табл. 5.1 приведены наблюдаемые числа, а в табл. 5.2 - ожидаемые.


ло и значение z, полученное по тем же данным. Можно показать, что для таблиц сопряженности размером 2x2 выполняется равенство X2 = z2.

Критическое значение %2 можно найти хорошо знакомым нам способом. На рис. 5.7 показано распределение возможных значений X2 для таблиц сопряженности размером 2x2 для случая, когда между изучаемыми признаками нет никакой связи. Величина X2 превышает 3,84 только в 5% случаев. Таким образом, 3,84 - критическое значение для 5% уровня значимости. В примере с тромбозом шунта мы получили значение 7,10, поэтому мы отклоняем гипотезу об отсутствии связи между приемом аспирина и образованием тромбов. Напротив, данные из табл. 5.3 хорошо согласуются с гипотезой об одинаковом влиянии галотана и морфина на послеоперационный уровень смертности.

Разумеется, как и все критерии значимости, х2 даёт вероятностную оценку истинности той или иной гипотезы. На самом деле аспирин может и не оказывать влияния на риск тромбоза. На самом деле галотан и морфин могут по-разному влиять на операционную летальность. Но, как показал критерий, и то и другое маловероятно.

Применение критерия х2 правомерно, если ожидаемое число в любой из клеток больше или равно 5. Это условие аналогично условию применимости критерия z.

Критическое значение %2 зависит от размеров таблицы сопряженности, то есть от числа сравниваемых методов лечения (строк таблицы) и числа возможных исходов (столбцов таблицы). Размер таблицы выражается числом степеней свободы v:

V = (r - 1)(с - 1),

где r - число строк, а с - число столбцов. Для таблиц размером 2x2 имеем v = (2 - l)(2 - l) = l. Критические значения %2 для разных v приведены в табл. 5.7.

Приведенная ранее формула для х2 в случае таблицы 2x2 (то есть при 1 степени свободы) дает несколько завышенные значения (сходная ситуация была с критерием z). Это вызвано тем, что теоретическое распределение х2 непрерывно, тогда как набор вычисленных значений х2 дискретен. На практике это приведет к тому, что нулевая гипотеза будет отвергаться слишком часто. Чтобы компенсировать этот эффект, в формулу вводят поправку Йеитса:(1 O - E - -

Заметим, поправка Йеитса применяется только при v = 1, то есть для таблиц 2x2.

Применим поправку Йеитса к изучению связи между приемом аспирина и тромбозами шунта (табл. 5.1 и 5.2):


Как вы помните, без поправки Йейтса значение %2 равнялось 7,10. Исправленное значение %2 оказалось меньше 6,635 - критического значения для 1% уровня значимости, но по-прежнему превосходит 5,024 - критическое значение для 2,5% уровня значимости.

Критерий х2 для произвольной таблицы сопряженности

Теперь рассмотрим случай, когда таблица сопряженности имеет число строк или столбцов, большее двух. Обратите внимание, что критерий z в таких случаях неприменим.

В гл. 3 мы показали, что занятия бегом уменьшают число менструаций*. Побуждают ли эти изменения обращаться к врачу? В табл. 5.5 приведены результаты опроса участниц исследования. Подтверждают ли эти данные гипотезу о том, что занятия бегом не влияют на вероятность обращения к врачу по поводу нерегулярности менструации?

Из 165 обследованных женщин 69 (то есть 42%) обратились к врачу, остальные 96 (то есть 58%) к врачу не обращались. Если

* При этом мы для простоты вычислений размеры всех трех групп - контрольной, физкультурниц и спортсменок - полагали одинаковыми. Теперь мы воспользуемся настоящими данными.


занятия бегом не влияют на вероятность обращения к врачу, то в каждой из групп к врачу должно было обратиться 42% женщин. В табл. 5.6 приведены соответствующие ожидаемые значения. Сильно ли отличаются от них реальные данные?

Для ответа на этот вопрос вычислим %2:

(14 - 22,58)2 (40 - 31,42)2 (9 - 9,62)2

22,58 31,42 9,62

(14 - 13,38)2 (46 - 36,80)2 (42 - 51,20)2

13,38 36,80 51,20

Число строк таблицы сопряженности равно трем, столбцов - двум, поэтому число степеней свободы v = (3 - 1)(2 - 1) = 2. Если гипотеза об отсутствии межгрупповых различий верна, то, как видно из табл. 5.7 значение %2 превзойдет 9,21 не более чем в 1% случаев. Полученное значение больше. Тем самым, при уровне значимости 0,01 можно отклонить гипотезу об отсутствии связи между бегом и обращениями к врачу по поводу менструации. Однако, выяснив, что связь существует мы, тем не менее, не сможем указать какая (какие) именно группы отличаются от остальных.

Итак, мы познакомились с критерием %2. Вот порядок его применения.

Постройте по имеющимся данным таблицу сопряженности.

Подсчитайте число объектов в каждой строке и в каждом столбце и найдите, какую долю от общего числа объектов составляют эти величины.

Зная эти доли, подсчитайте с точностью до двух знаков после запятой ожидаемые числа - количество объектов, которое
попало бы в каждую клетку таблицы, если бы связь между строками и столбцами отсутствовала

Найдите величину, характеризующую различия наблюдаемых и ожидаемых значений. Если таблица сопряженности имеет размер 2x2, примените поправку Йеитса

Вычислите число степеней свободы, выберите уровень значимости и по табл. 5.7, определите критическое значение %2. Сравните его с полученным для вашей таблицы.

Как вы помните, для таблиц сопряженности размером 2x2 критерий х2 применим только в случае, когда все ожидаемые числа больше 5. Как обстоит дело с таблицами большего размера? В этом случае критерии %2 применим, если все ожидаемые числа не меньше 1 и доля клеток с ожидаемыми числами меньше 5 не превышает 20%. При невыполнении этих условии критерии х2 может дать ложные результаты. В таком случае можно собрать дополнительные данные, однако это не всегда осуществимо. Есть и более простой путь - объединить несколько строк или столбцов. Ниже мы покажем, как это сделать.

Преобразование таблиц сопряженности

В предыдущем разделе мы установили существование связи между занятием бегом и обращениями к врачу по поводу менструаций или, что, то же самое, существование различий между группами по частоте обращения к врачу. Однако мы не могли определить, какие именно группы отличаются друг от друга, а какие нет. С похожей ситуацией мы сталкивались в дисперсионном анализе. При сравнении нескольких групп дисперсионный анализ позволяет обнаружить сам факт существования различий, но не указывает выделяющиеся группы. Последнее позволяют сделать процедуры множественного сравнения, о которых мы говорили в гл. 4. Нечто похожее можно проделать и с таблицами сопряженности.

Глядя на табл. 5.5, можно предположить, что физкультурницы и спортсменки обращались к врачу чаще, чем женщины из контрольной группы. Различие между физкультурницами и спортсменками кажется незначительным.

Проверим гипотезу о том, что физкультурницы и спортсмен-

V 0,50 0,25 0,10 0,05 0,025 0,01 0,005 0,001
41 40,335 46,692 52,949 56,942 60,561 64,950 68,053 74,745
42 41,335 47,766 54,090 58,124 61,777 66,206 69,336 76,084
43 42,335 48,840 55,230 59,304 62,990 67,459 70,616 77,419
44 43,335 49,913 56,369 60,481 64,201 68,710 71,893 78,750
45 44,335 50,985 57,505 61,656 65,410 69,957 73,166 80,077
46 45,335 52,056 58,641 62,830 66,617 71,201 74,437 81,400
47 46,335 53,127 59,774 64,001 67,821 72,443 75,704 82,720
48 47,335 54,196 60,907 65,171 69,023 73,683 76,969 84,037
49 48,335 55,265 62,038 66,339 70,222 74,919 78,231 85,351
50 49,335 56,334 63,167 67,505 71,420 76,154 79,490 86,661
Уровень значимости

J. H. Zar, Biostatistical Analysis, 2d ed, Prentice-Hall, Englewood Cliffs, N.J., 1984.

ки обращаются к врачу одинаково часто. Для этого выделим из исходной таблицы подтаблицу, содержащую данные по двум этим группам. В табл. 5.8 приведены наблюдаемые и ожидаемые числа; они довольно близки.



 


Читайте:



Опции «Везде как дома» и «Везде как дома Россия» МТС — описание, стоимость, как подключить

Опции «Везде как дома» и «Везде как дома Россия» МТС — описание, стоимость, как подключить

Россия занимает огромную площадь территории нашей планеты. Многие россияне сталкиваются с частыми разъездами по родной земле: командировки, поездки...

Как восстановить или сбросить пароль пользователя Windows

Как восстановить или сбросить пароль пользователя Windows

Если вы вдруг забыли пароль от своей учётной записи в Windows, то вам ничего не остаётся кроме как искать способ его сброса или же устанавливать...

Как полностью удалить аваст Прога для удаления avast

Как полностью удалить аваст Прога для удаления avast

Специализированная утилита для полного и корректного удаления антивируса Avast из системы. Программа создана официальной командой разработчиков...

Мобильное приложение Алиэкспресс

Мобильное приложение Алиэкспресс

Сегодня прогресс движется вперёд и становится очень популярным, если у магазина есть мобильное приложение. Алиэкспресс не исключение. Навигация...

feed-image RSS