Главная - Smart tv
Элементы общей теории радиотехнических сигналов. Основные характеристики сигналов

Использование термина «простой» сигнал, как радиоимпульс с простой формой огибающей и высокочастотным заполнением колебанием неизменной частоты, является общепринятым. Для простых сигналов произведение ширины спектра А/ на длительность At, т.е. база сигнала Б, равная произведению полосы, занимаемой сигналом на его длительность, представляет собой величину, близкую к «1»:

В частности, прямоугольный импульс с постоянной частотой заполнения относится к классу простых сигналов, так как для него А/*« /х и; At = t b , и, следовательно, выполняется условие (4.11).

Сигналы, для которых произведение их длительности на ширину спектра, г.е. база, значительно превышает единицу (Б >> 1), получили название «сложных» (сигналы сложной формы).

Для увеличения потенциальной точности измерения дальности в радиолокации необходимо использовать сигналы с широким спектром. При ограничении пиковой мощности импульса для сохранения дальности действия РТС целесообразно расширять спектр зондирующего сигнала не за счет его укорочения, а за счет введения внутри- импульсной фазовой или частотной модуляции, т.е. за счет перехода к сложным сигналам.

Радиоимпульс с линейной частотной модуляцией

В радиолокации широко используют линейно-частотно-моду- лированные (ЛЧМ) импульсные сигналы, несущая частота которых может быть представлена в виде:

где/ 0 - начальное значение частоты; Д/д- девиация частоты; т и - длительность импульса. Линейному закону изменения частоты (4.12) соответствует квадратичный закон изменения фазы ЛЧМ-сигнала:

У ЛЧМ-импульса с огибающей прямоугольной формы, представленного на рис. 4.9, комплексная огибающая имеет вид:


Рис. 4.9.

Нормированная функция рассогласования имеет вид:


Эта функция описывает рельеф тела неопределенности прямоугольного ЛЧМ-импульса, сечение которого вертикальной плоскостью Q = 0 - огибающая ЛЧМ-импульса на выходе согласованного фильтра при отсутствии расстройки по частоте. Ее график представлен на рис. 4.10 сплошной линией. Для сравнения прямой линией показана огибающая прямоугольного радиоимпульса с постоянной частотой заполнения и длительностью т н на выходе СФ. Как видно из этого рисунка, при прохождении ЛЧМ-импульса через СФ происходит его сжатие во времени. Если на входе фильтра импульс имел длительность т,„ = т и,то на выходе длительность импульса составляет х ош = т (1 ДО д 2,47г (по уровню 0,5). Тогда коэффициент сжатия


Рис. 4.10.

Коэффициент сжатия прямо пропорционален девиации частоты. Поскольку длительность импульса и девиацию частоты можно задавать независимо друг от друга, удается реализовать большой коэффициент сжатия.

Поскольку ДО л « ДО, ДО - ширина спектра ЛЧМ-импульса, коэффициент сжатия (15.15) оказывается практически равным базе сигнала К с & Б (это распространяется на все сложные сигналы). Сложный сигнал с помощью СФ можно сжать по длительности на величину, равную базе сигнала.

Поясним сжатие ЛЧМ-сигнала в СФ. ЛЧМ-сигналу, изображенному на рис. 4.9, соответствует согласованный фильтр с импульсной харакгеристикой (рис. 4.11). Импульсная харакгеристика огража- ет отклик системы на воздействие дельта-импульса. На выходе фильтра, в соответствии с процедурой свертки воздействия импульсной реакции, вначале появляются составляющие более высокой частоты, а затем более низкой, т.е. составляющие высокой частоты задерживаются в фильтре в меньшей степени, чем низкочастотные. Нижние частоты ЛЧМ-импульса поступают на вход СФ раньше (см. рис. 4.9), но задерживаются они в большей степени; высшие частоты действуют позже, но задерживаются меньше. В результате группы различных частот совмещаются и происходит укорочение импульса.

Рис. 4.11.

В качестве фильтров используются линии задержки (ЛЗ)на поверхностных акустических волнах (ПАВ). На входе и выходе ЛЗ встроено- штыревые преобразователи (ВШП) преобразуют энергию электрического поля в механическую и обратно. Для различных частот различна действующая длина звуконровода и высокочастотные составляющие догоняют низкочастотные. Тем самым реализуется сжатие ЛЧМ-импульсов.

Совместное разрешение ЛЧМ-им- пульсов по времени и частоте осуществить значительно сложнее, чем разрешение тех же импульсов но одному из параметров (при известном значении другого параметра). Это следует из диаграммы неопределенности ЛЧМ-радиоимпульса (рис. 4.12). Рис - 41 2. Диаграмма

^ неопределенности

Совместное разрешение сигналов по вре- ЛЧМ-импульса мени запаздывания и частоте возможно, если их параметры лежат вне выделенной области.

Термин “сигнал” часто встречается не только в научно-технических вопросах, но и в повседневной жизни. Иногда, не задумываясь о строгости терминологии, мы отождествляем такие понятия, как сигнал, сообщение, информация. Обычно это не приводит к недоразумениям, поскольку “сигнал” происходит от латинского термина “signum” - ”знак”, имеющий широкий смысловой диапазон. Сигналы представляют собой физические средства, передающие сообщения. Поскольку электрические сигналы наиболее удобны, их передача используется во многих сферах деятельности человека .

Тем не менее, приступая к систематическому изучению теоретической радиоэлектроники, следует по возможности уточнить содержательный смысл понятия “сигнал”. В соответствии с принятой традицией сигналом называют процесс изменения во времени физического состояния какого-либо объекта, который служит для отображения, регистрации и передачи сообщений.

Круг вопросов, базирующихся на понятиях “сообщение”, ”информация”, весьма широк. Он является объектом пристального внимания инженеров, математиков, лингвистов, философов.

Приступая к изучению каких-либо объектов или явлений, в науке всегда стремятся провести их предварительную классификацию.

Сигналы можно описать посредством математических моделей. Для того чтобы сделать сигналы объектом теоретического изучения и расчетов, следует указать способ их математического описания, т.е. создать математическую модель исследуемого сигнала. Математической моделью сигнала может быть, например, функциональная зависимость, аргументом которой является время.

Создание модели (в данном случае физического сигнала) - первый существенный шаг на пути систематического изучения свойства явления. Прежде всего, математическая модель позволяет абстрагироваться от конкретной природы носителя сигнала. В радиотехнике одна и та же математическая модель с равным успехом описывает ток, напряжение, напряженность электромагнитного поля и т.д.

Существенная сторона абстрактного метода, базирующегося на понятии математической модели, заключена в том, что мы получаем возможность описывать именно те свойства сигналов, которые объективно выступают как определяюще важные. При этом игнорируется большое число второстепенных признаков. Например, в подавляющем большинстве случаев крайне затруднительно подобрать точные функциональные зависимости, которые соответствовали бы электрическим колебаниям, наблюдаемым экспериментально. Поэтому исследователь, руководствуясь всей совокупностью доступных ему сведений, выбирает из наличного арсенала математических моделей сигналов те, которые в конкретной ситуации наилучшим и самым простым образом описывают физический процесс. Итак, выбор модели - процесс в значительной степени творческий.

Зная математические модели сигналов, можно сравнивать эти сигналы между собой, устанавливать их тождество и различие, проводить классификацию.

С информационной точки зрения, детерминированные сигналы не содержат информации, но зато могут служить удобными моделями для изучения временных и спектральных свойств сигналов.

Реальные сигналы, содержащие информацию, выступают как случайные. Но математические модели таких сигналов чрезвычайно сложны и неудобны для изучения временных спектральных свойств сигналов.

Детерминированные сигналы делят на управляющие (низкочастотные) и радиосигналы (высокочастотные колебания). Управляющие сигналы появляются в месте возникновения информации (сигналы различных датчиков) и могут быть разделены на периодические и непериодические. Настоящая работа посвящена моделированию временных и спектральных свойств периодических сигналов.

При анализе периодических сигналов широкое распространение получило представление их по системам ортогональных функций, например, Уолша, Чебышева, Лаггера, синуса и косинуса и других.

Наибольшее распространение получила ортогональная система основных тригонометрических функций - синусов и косинусов кратных аргументов. Это объясняется рядом причин. Во-первых, гармоническое колебание является единственной функцией времени, сохраняющей свою форму при прохождении через любую линейную цепь (с постоянными параметрами). Изменяется лишь амплитуда и фаза колебания. Во-вторых, разложение сложного сигнала по синусам и по косинусам позволяет использовать символический метод, разработанный для анализа передачи гармонических колебаний через линейные цепи. По этим, а также и по некоторым другим причинам, гармонический анализ получил широкое распространение во всех отраслях современной науки и техники.

Если такой сигнал представлен в виде суммы гармонических колебаний с различными частотами, то говорят, что осуществлено спектральное разложение этого сигнала. Отдельные гармонические компоненты сигнала представляют его спектр. Спектральная диаграмма периодического сигнала - это графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы, т.е. модули и аргументы комплексных коэффициентов ряда Фурье, которые полностью определяют структуру частотного спектра периодического колебания.

Особо интересуются амплитудной диаграммой, которая позволяет судить о процентном содержании тех или иных гармоник в спектре периодического сигнала .

Прежде чем приступить к изучению каких – либо явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большему количеству признаков. Предпримем подобную попытку применительно к радиотехническим сигналам и помехам.

Основные понятия, термины и определения в области радиотехнических сигналов устанавливает государственный стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы весьма разнообразны. Их можно классифицировать по целому ряду признаков.

1. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы делятся на одномерные и многомерные . На практике наиболее распространены одномерные сигналы. Они обычно являются функциями времени. Многомерные сигналы состоят из множества одномерных сигналов, и кроме того, отражают свое положение в n- мерном пространстве. Например, сигналы, несущие информацию об изображении какого-либо предмета, природы, человека или животного, являются функциями и времени и положения на плоскости.

2. По особенностям структуры временного представления все радиотехнические сигналы подразделяются на аналоговые , дискретные и цифровые . В лекции №1 уже были рассмотрены их основные особенности и отличия друг от друга.

3. По степени наличия априорной информации все многообразие радиотехнических сигналов принято делить на две основные группы: детерминированные (регулярные) и случайные сигналы. Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны. Примером детерминированного радиотехнического сигнала может служить гармоническое (синусоидальное) колебание, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известно. По сути дела детерминированный сигнал не несет в себе никакой информации и практически все его параметры можно передать по каналу радиосвязи одним или несколькими кодовыми значениями. Другими словами, детерминированные сигналы (сообщения) по существу не содержат в себе информации, и нет смысла их передавать. Они обычно применяются для испытаний систем связи, радиоканалов или отдельных устройств.

Детерминированные сигналы подразделяются на периодические и непериодические (импульсные ). Импульсный сигнал – это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен. Периодические сигналы бывают гармоническими , то есть содержащими только одну гармонику, и полигармоническими , спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы называются полигармоническими.



Случайные сигналы – это сигналы, мгновенные значения которых в любые моменты времени неизвестны и не могут быть предсказаны с вероятностью, равной единице. Как ни парадоксально на первый взгляд, но сигналом несущим полезную информацию, может быть только случайный сигнал. Информация в нем заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. На практике любой радиотехнический сигнал, в котором заложена полезная информация, должен рассматриваться как случайный.

4. В процессе передачи информации сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражается в их названии: сигналы модулированные , демодулированные (детектированные ), кодированные (декодированные ), усиленные , задержанные , дискретизированные , квантованные и др.

5. По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

6. По принадлежности к тому или иному виду систем передачи информации различают телефонные , телеграфные , радиовещательные , телевизионные , радиолокационные , управляющие , измерительные и другие сигналы.

Рассмотрим теперь классификацию радиотехнических помех. Под радиотехнической помехой понимают случайный сигнал, однородный с полезным и действующий одновременно с ним. Для систем радиосвязи помеха – это любое случайное воздействие на полезный сигнал, ухудшающее верность воспроизведения передаваемых сообщений. Классификация радиотехнических помех возможна также по ряду признаков.



1. По месту возникновения помехи делят на внешние и внутренние . Основные их виды были уже рассмотрены в лекции №1.

2. В зависимости от характера взаимодействия помехи с сигналом различают аддитивные и мультипликативные помехи. Аддитивной называется помеха, которая суммируется с сигналом. Мультипликативной называется помеха, которая перемножается с сигналом. В реальных каналах связи обычно имеют место и аддитивные, и мультипликативные помехи.

3. По основным свойствам аддитивные помехи можно разделить на три класса: сосредоточенные по спектру (узкополосные помехи), импульсные помехи (сосредоточенные во времени) и флуктуационные помехи (флуктуационные шумы), не ограниченные ни во времени, ни по спектру. Сосредоточенными по спектру называют помехи, основная часть мощности которых находится на отдельных участках диапазона частот, меньших полосы пропускания радиотехнической системы. Импульсной помехой называется регулярная или хаотическая последовательность импульсных сигналов, однородных с полезным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы радиотехнических цепей или работающих рядом с ними устройств. Импульсные и сосредоточенные помехи часто называют наводками .

Между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют в единстве, хотя и противоположны по своему действию.

В качестве переносчика сообщений используются высокочастотные электромагнитные колебания (радиоволны) соответствующего диапазона, способные распространяться на большие расстояния.

Колебание несущей частоты, излучаемое передатчиком, характеризуется: амплитудой, частотой и начальной фазой. В общем случае оно представляется в виде:

i = I m sin(ω 0 t + Ψ 0) ,

где: i – мгновенное значение тока несущего колебания;

I m – амплитуда тока несущего колебания;

ω 0 – угловая частота несущего колебания;

Ψ 0 – начальная фаза несущего колебания.

Первичные сигналы (передаваемое сообщение, преобразованное в электрическую форму), управляющие работой передатчика, могут изменять один из этих параметров.

Процесс управления параметрами тока высокой частоты с помощью первичного сигнала, называется модуляцией (амплитудной, частотной, фазовой). Для телеграфных видов передач применяется термин «манипуляция».

В радиосвязи, для передачи информации, применяются радиосигналы:

радиотелеграфные;

радиотелефонные;

фототелеграфные;

телекодовые;

сложные виды сигналов.

Радиотелеграфная связь различается: по способу телеграфирования; по способу манипуляции; по применению телеграфных кодов; по способу использования радиоканала.

В зависимости от способа и скорости передачи радиотелеграфные связи делятся на ручные и автоматические. При ручной передаче манипуляция осуществляется телеграфным ключом с использованием кода МОРЗЕ. Скорость передачи (при слуховом приеме) составляет 60–100 знаков в минуту.

При автоматической передаче манипуляция осуществляется электромеханическими устройствами, а прием с помощью печатающих аппаратов. Скорость передачи 900–1200 знаков в минуту.

По способу использования радиоканала телеграфные передачи подразделяются на одноканальные и многоканальные.

По способу манипуляции к наиболее распространенным телеграфным сигналам относятся сигналы с амплитудной манипуляцией (АТ – амплитудный телеграф – А1), с частотной манипуляцией (ЧТ и ДЧТ – частотная телеграфия и двойная частотная телеграфия – F1 и F6), с относительной фазовой манипуляцией (ОФТ – фазовая телеграфия – F9).

По применению телеграфных кодов используются телеграфные системы с кодом МОРЗЕ; стартстопные системы с 5-ти и 6-ти значным кодом и другие.

Телеграфные сигналы представляют собой последовательность прямоугольных импульсов (посылок) одинаковой или различной длительности. Наименьшая по длительности посылка называется элементарной.

Основные параметры телеграфных сигналов: скорость телеграфирования (V) ; частота манипуляции (F) ;ширина спектра (2D f) .



Скорость телеграфирования V равна количеству элементарных посылок, передаваемых за одну секунду, измеряется в бодах. При скорости телеграфирования 1 бод за 1 с передается одна элементарная посылка.

Частота манипуляции F численно равна половине скорости телеграфирования V и измеряется в герцах: F= V/2 .

Амплитудно-манипулированный телеграфный сигнал имеет спектр (рис.2.2.1.1), в котором кроме несущей частоты, содержится бесконечное множество частотных составляющих, расположенных по обе стороны от нее, с интервалами равными частоте манипуляции F. На практике для уверенного воспроизведения телеграфного радиосигнала достаточно принять кроме сигнала несущей частоты по три составляющих спектра, расположенных по обе стороны от несущей. Таким образом, ширина спектра амплитудно-манипулированного телеграфного ВЧ сигнала равна 6F. Чем больше частота манипуляции, тем шире спектр ВЧ телеграфного сигнала.

Рис. 2.2.1.1. Временное и спектральное представление сигнала АТ

При частотной манипуляции ток в антенне по амплитуде не изменяется, а меняется только частота в соответствии с изменением манипулирующего сигнала. Спектр сигнала ЧТ (ДЧТ) (рис. 2.2.1.2) представляет собой как бы спектр двух (четырех) независимых амплитудно-манипулированных колебаний со своими несущими частотами. Разность между частотой «нажатия» и частотой «отжатия» называется разносом частот, обозначается ∆f и может находиться в пределах 50 – 2000 Гц (чаще всего 400 – 900 Гц). Ширина спектра сигнала ЧТ составляет 2∆f+3F.

Рис.2.2.1.2. Временное и спектральное представление сигнала ЧТ

Для повышения пропускной способности радиолинии применяются многоканальные радиотелеграфные системы. В них на одной несущей частоте радиопередатчика, можно передавать одновременно две и более телеграфные программы. Различают системы с частотным уплотнением каналов, с временным разделением каналов и комбинированные системы.

Простейшей двухканальной системой является система двойного частотного телеграфирования (ДЧТ). Сигналы, манипулированные по частоте в системе ДЧТ передаются путем изменения несущей частоты передатчика вследствие одновременного воздействия на него сигналов двух телеграфных аппаратов. При этом используется то, что сигналы двух аппаратов, работающих одновременно, могут иметь лишь четыре сочетания передаваемых посылок. При таком способе в любой момент времени излучается сигнал одной частоты, соответствующий определенному сочетанию манипулированных напряжений. В приемном устройстве имеется дешифратор, с помощью которого формируются телеграфные посылки постоянного напряжения по двум каналам. Уплотнение по частоте заключается в том, что частоты отдельных каналов размещаются на различных участках общего диапазона частот и все каналы передаются одновременно.

При временном разделении каналов радиолиния предоставляется каждому телеграфному аппарату последовательно с помощью распределителей (рис.2.2.1.3).

Рис.2.2.1.3. Многоканальная система с временным разделением каналов

Для передачи радиотелефонных сообщений применяются в основном амплитудно-модулированные и частотно-модулированные высокочастотные сигналы. Модулирующий НЧ сигнал представляет собой совокупность большого количества сигналов разных частот, расположенных в некоторой полосе. Ширина спектра стандартного НЧ телефонного сигнала, как правило, занимает полосу 0,3–3,4 кГц.

Общие сведения о радиотехнических сигналах

При передаче информации на расстояние с помощью радиотехнических систем используются различные виды радиотехнических (электрических) сигналов. Традиционно радиотехническими сигналами принято считать любые электрические сигналы, относящиеся к радиодиапазону. С математической точки зрения, всякий радиотехнический сигнал можно представить некоторой функцией времени u (t ), которая характеризует изменение его мгновенных значений напряжения (чаще всего), тока или мощности. По математическому представлению все многообразие радиотехнических сигналов принято делить на две основные группы: детерминированные (регулярные) и случайные сигналы.

Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны, т. е., предсказуемы с вероятностью, равной единице /1/. Примером детерминированного радиотехнического сигнала может служить гармоническое колебание. Следует отметить, что по сути дела детерминированный сигнал не несет в себе никакой информации и практически все его параметры можно передать по каналу радиосвязи одним или несколькими кодовыми значениями. Другими словами, детерминированные сигналы (сообщения) по существу не содержат в себе информации, и нет смысла их передавать.

Случайные сигналы – это сигналы, мгновенные значения которых в любые моменты времени не известны и не могут быть предсказаны с вероятностью, равной единице /1/. Практически все реальные случайные сигналы или большинство из них, представляют собой хаотические функции времени.

По особенностям структуры временного представления все радиотехнические сигналы делятся на непрерывные и дискретные. а по типу передаваемой информации: на аналоговые и цифровые. В радиотехнике широко применяются импульсные системы, действие которых основано на использовании дискретных сигналов. Одной из разновидностей дискретных сигналов является цифровой сигнал /1/. В нем дискретные значения сигнала заменяются числами, чаще всего реализованными в двоичном коде, который представляют высоким (единица ) и низким (нуль ) уровнями потенциалов напряжения.

Функции, описывающие сигналы, могут принимать как вещественные, так и комплексные значения. Поэтому в радиотехнике говорят о вещественных и комплексных сигналах. Применение той или иной формы описания сигналадело математического удобства.

Понятие спектра

Непосредственный анализ воздействия сигналов сложной формы на радиотехнические цепи весьма затруднителен и вообще не всегда возможен. Поэтому сложные сигналы имеет смысл представлять как сумму некоторых простых элементарных сигналов. Принцип суперпозиции обосновывает возможность такого представления, утверждая, что в линейных цепях воздействие суммарного сигнала равносильно сумме воздействий соответствующих сигналов по отдельности.

В качестве элементарных сигналов часто применяют гармоники. Такой выбор имеет ряд достоинств:

а) Разложение на гармоники реализуется достаточно легко путем использования преобразования Фурье.

б) При воздействии гармонического сигнала на любую линейную цепь его форма не изменяется (остается гармонической). Сохраняется также частота сигнала. Амплитуда и фаза, конечно, изменяются; их можно сравнительно просто рассчитывать, применяя метод комплексных амплитуд.

в) В технике широко используются резонансные системы, позволяющие экспериментально выделять одну гармонику из сложного сигнала.

Представление сигнала суммой гармоник, заданных частотой, амплитудой и фазой, называется разложением сигнала в спектр.

Гармоники, входящие в состав сигнала, задаются в тригонометрической или мнимопоказательной форме.



 


Читайте:



Программа «Аэрофлот Бонус»: как накопить мили и на что их можно потратить?

Программа «Аэрофлот Бонус»: как накопить мили и на что их можно потратить?

Аэрофлот - лидер российской гражданской авиации. Его приравнивают к национальному авиаперевозчику. Компания основана в далеком 1923 году и...

Как узнать какой диск на компьютере: SSD или HDD Как узнать какой ssd стоит на компьютере

Как узнать какой диск на компьютере: SSD или HDD Как узнать какой ssd стоит на компьютере

В данной статье вы узнаете о том, как узнать основные характеристики твердотельных накопителей , а также, как их протестировать. Для этой операции...

Тестирование Fractal Design Define R5 Fractal Design Define R5 — Тихий, просторный

Тестирование Fractal Design Define R5 Fractal Design Define R5 — Тихий, просторный

Во времена, когда начали появляться первые персональные компьютеры, производители почти не уделяли внимание их внешнему виду. Тогда требовалось...

Как ускорить "Андроид" - смартфон и планшет?

Как ускорить

Всем доброго времени дорогие друзья, знакомые, читатели и прочие личности. Сегодня посмотрим как ускорить Андроид, всякие там приложения под него и...

feed-image RSS