Главная - Интернет
Мультиплексоры и демультиплексоры: схемы, принцип работы. Применение мультиплексоров и демультиплексоров Постановка лабораторной работы по курсу волоконно-оптические системы связи

Уравнения, описывающие работу демультиплексора:

https://pandia.ru/text/77/497/images/image015_70.gif" width="100" height="24 src="> (4)

Схема демультиплексора, построенная по данным уравнениям и его графическое изображение представлены на рис. 4.

Рис. 4. Схема демультиплексора "1-4" (а)

и его условное изображение (б)

Функция демультиплексора легко реализуется с помощью дешифратора, если его вход “Разрешение” (Е) использовать в качестве информационного входа демультиплексора, а входы 1, 2, 4 … - в качестве адресных входов демультиплексора А 0, А 1, А 2, … Действительно, при активном значении сигнала на входе Е избирается выход, соответствующий коду, поданному на адресные входы. Поэтому ИС дешифраторов, имеющих разрешающий вход, иногда называют не просто дешифраторами, а дешифраторами-демультиплексорами (например, К155ИД4, К531ИД7 и др.).

1.3 Применение мультиплексоров и демультиплексоров

1.3.1. Термином “мультиплексирование” называют процесс передачи данных от нескольких источников по общему каналу, а устройство, осуществляющее на передающей стороне операцию сведения данных в один канал, принято называть мультиплексором. Подобное устройство способно осуществлять временное разделение сигналов, поступающих от нескольких источников, и передавать их в канал (линию) связи друг за другом в соответствии со сменой кодов на своих адресных входах.

На приемной стороне обычно требуется выполнить обратную операцию – демультиплексирование, т. е. распределение порций данных, поступивших по каналу связи в последовательные моменты времени, по своим приемникам. Эту операцию выполняет демультиплексор. Совместное использование мультиплексора и демультиплексора для передачи данных от n источников к n приемникам по общей линии иллюстрирует рис. 5. (В общем случае число источников данных не равно числу приемников).

https://pandia.ru/text/77/497/images/image018_62.gif" alt="Подпись:" align="left" width="253" height="123 src=">

0 " style="border-collapse:collapse;border:none">

2.2. Исследовать работу (снять таблицу истинности) ИС мультиплексора К531КП2.

2.3. На основе ИС мультиплексора К531КП2 спроектировать и испытать схему, реализующую логическую функцию, соответствующую вашему варианту (табл. 5).

Таблица 5

В компьютерных схемах используется множество деталей, которые по отдельности кажутся бесполезными (и в большинстве случае они таковими и являются). Но стоит их, придерживаясь законов физики, собрать в логическую систему, как они могут оказаться просто незаменимыми. Хорошим примером являются мультиплексоры и демультиплексоры. Они играют важную роль при создании систем связи. Мультиплексор - это несложно. И вы сами в этом убедитесь прочитав статью.

Мультиплексор - это что?

Под мультиплексором понимают устройство, которое выбирает один из нескольких входов, а потом подключает к своему выходу. Всё зависит от состояния двоичного кода. Мультиплексор используется как переключатель сигналов, который имеет несколько входов и только один выход. Механизм его работы можно описать такой таблицей:

Подобные таблицы можно увидеть при изучении программирования, а конкретнее - при решении задач логического выбора. Сначала про аналоговый мультиплексор. Они соединяют входы и выходы напрямую. Существует оптический мультиплексор, который является более сложными. Они просто копируют получаемые значения.

Что такое демультиплексор?

Под демультиплексором понимают устройство с одним входом и множеством выходов. Что к чему будет подключаться - определяет двоичный код. Для этого он считывается, и выход, который имеет необходимое значение, подключается к входу. Как видите, данные устройства не обязательно должны действовать в паре для полноценной работы, а своё название получили из-за выполняемого функционала.

Схема мультиплексора

Давайте рассмотрим схему мультиплексора. Самая большая часть - это элемент И-ИЛИ. Он может иметь разное количество входов, начиная от двух и теоретически до бесконечности. Но, как правило, больше чем на 8 входов их не делают. Каждый отдельный вход называется инвертором. Те, что расположены слева, называют информационными. Посередине находятся адресные входы. Справа обычно подключается элемент, который определяет, будет ли работать сам мультиплексор. Это может быть дополнено входом с инверсией. Для письменного обозначения количества входов и для показа, что это мультиплексор, используют записи такого типа: «1*2». Под единицей понимают количество выводов, что идут в утройство. Двойка используется для обозначения выхода и обычно равна 1. В зависимости от количества адресных входов определяется, какой будет разряд у мультиплексора, и в данном случае используется формула: 2 n . Вместо n как раз и подставляют необходимое значение. В данном случае 2 2 = 4. Если для двоичного или троичного мультиплексора разница количества входов и выходов составляет соответственно два и три, то говорят, что они полные. При меньшем значении они неполные. Вот такое устройство имеет мультиплексор. Схема дополнительно представлена в виде изображения, чтобы вы имели самое полное представление о его строении.

Схема демультиплексора

Для коммутации каналов в демультиплексорах используются только логические элементы «И». Учитывайте, что КМОП-микросхемы часто строятся с применением ключей на полевых транзисторах. Поэтому к ним не применяется понятие демультиплексора. Можно ли сделать так, чтобы одно устройство могла изменить свои свойства на диаметрально противоположные? Да, если поменять местами информационные выходы и входы, вследствие чего к названию "мультиплексор" можно добавлять префикс «де-». По своему предназначению они похожи на дешифраторы. Несмотря на имеющуюся разницу, оба прибора в отечественных микросхемах обозначаются одними и теми же буквами - ИД. Демультиплексоры выполняют однооперандные (одновходные, унитарные) логические функции, которые имеют значительное количество возможных вариантов реакции на сигнал.

Виды мультиплексоров

В основном различают всего два вида мультиплексоров:

  1. Терминальные. Данный тип мультиплексоров располагают на концах линии связи, по которой осуществляется передача каких-то данных.
  2. Ввода/Вывода. Они применяются в качестве инструментария, который устанавливается в разрыв линии связи, чтобы вывести несколько каналов информации из общего потока. Таким способом обходят необходимость установки терминальных мультиплексоров, которые являются более дорогими механизмами.

Стоимость мультиплексоров

Стоит подметить, что мультиплексоры - удовольствие не из дешевых. Самый дешевый на сегодняшний момент стоит больше 12 тысяч рублей, верхний предел - 270 000. Но даже при таких ценах они всё равно почти всегда выгодней прокладки новой линии. Но такая выгода присутствует, только если есть квалифицированные кадры, которые смогут выполнить весь объем работ надлежащим образом и установят правильно мультиплексор. Цена может немного повыситься, если нет штатного специалиста. Но их всегда можно нанять в специализированных компаниях.

Мультиплексирование

Мультиплексирование сигналов осуществляется из-за значительной стоимости самих каналов связи, а также из-за затрат с их обслуживанием. К тому же с чисто физической точки зрения то, что имеется сейчас, не используется на полную мощность. Установка мультиплексора для работы в системе является более выгодной в денежном отношении, чем организация нового канала. К тому же на этот процесс приходится тратить меньше времени, что тоже предполагает определённые материальные выгоды.

В рамках статьи ознакомимся с принципом действия частотного мультиплексирования. При нём под каждый входящий поток в общем канале связи специально выделяют отдельный диапазон частот. А перед мультиплексором ставят задачу, чтобы он переносил спектр каждого из входящих спектров в другой интервал значений. Это делается для исключения возможности пересечения разных каналов. Чтобы они не превратились в помеху один для другого даже при выходе за отведённые рамки, используют технологию защитных интервалов. Она заключается в том, что оставляют определённую частоту между каждым каналом, которая примет на себя удар неполадок и не скажется на общем состоянии системы. Применено FDMA-мультиплексирование может быть в оптических и электрических линиях связи.

Из ограниченности ресурсов создалась возможность усовершенствования механизма. В конечном результате всё вылилось в процесс под названием «временное мультиплексирование». При данном механизме в общем высокоскоростном потоке отводится небольшой временной промежуток для передачи одного входного сигнала. Но это не единственный вариант реализации. Может быть и такое, что отведена определённая часть времени, которая циклично повторяется через заданный интервал. В общем перед мультиплексором в данных случаях стоит задача обеспечения циклического доступа к среде передачи данных, которая должна быть открыта входящим потокам на протяжении небольших промежутков.

Заключение

Мультиплексор - это то, что расширяет возможности коммуникаций. В рамках статьи были рассмотрены приборы, используемые для передачи данных, которые позволяют значительным образом экономить на данной статье расходов. Также было кратко рассмотрено их схематическое строение и понятие мультиплексирования, его особенности и применение. Таким образом, мы рассмотрели теоретическую базу. Она понадобится для перехода к практике при желании исследовать мультиплексоры и демультиплексоры.

3.7. Мультиплексоры и демультиплексоры

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему единственному выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует управляющему двоичному коду.

Ну и частное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, например, вот этой:

Рис. 1 – Пример схемы конкретного мультиплексора

Самый большой элемент здесь это элемент И-ИЛИ на четыре входа. Квадратики с единичками - инверторы.

Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них подают информацию, которую предстоит выбрать. Входы А0-А1 называются адресными входами. Сюда и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y . Вход С – синхронизация, разрешение работы.

На схеме еще есть входы адреса с инверсией. Это чтобы сделать устройство более универсальным.

На рисунке показан, как еще его называют, 4Х1 мультиплексор. Как мы знаем, что число разных двоичных чисел, которые может задавать код, определяется числом разрядов кода как 2 n , где n – число разрядов. Задавать нужно 4 состояния мультиплексора, а, значит, разрядов в коде адреса должно быть 2 (2 2 = 4).

Для пояснения принципа работы этой схемы посмотрим на её таблицу истинности:

Так двоичный код выбирает нужный вход. Например, имеем четыре объекта, и они подают сигналы, а устройство отображения у нас одно. Берем мультиплексор. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта.

Микросхемой мультиплексор обозначается так:

Рис. 2 – Мультиплексор как МКС

Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и много выходов. Двоичный код определяет, какой выход будет подключен ко входу.

Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких своих выходов и подключает его к своему входу или, ещё, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов.

Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И частное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования.

Из-за сходства схем мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексором и демультиплексором, смотря с какой стороны подавать сигналы.

Например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то есть, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (логических 0 или 1) существует возможность переключения аналоговых.

Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Рассмотрим схему селектора входов УМЗЧ . Построим её с использованием триггеров и мультиплексора.

Рис. 3 - Селектор входных сигналов

Итак, разберем работу. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор.

В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки.

Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Кто его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу сейчас. Хорошо бы поставить индикатор подключенного входа.

Вспоминаем семисегментный дешифратор. Переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выводы 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выводы 1 и 13). Входы дешифратора 4 и 8 (выводы 2 и 6) соединяем с корпусом (т. е. подаем лог. 0). Индикатор будет показывать состояние кольцевого счетчика, а именно цифры от 0 до 3. Цифра 0 соответствует первому входу, 1 - 2-му и т. д.

Лабораторная работа.

Мультиплексоры и демультиплексоры

Цель работы: практическое освоение принципов построения мультиплексоров и демультиплексоров и экспериментальное их исследование на лабораторном стенде.

1.1 Мультиплексоры

Мультиплексор – это комбинационная многовходовая схема с одним выходом. Входы мультиплексора подразделяются на информационные Д 0, Д 1, …, Д n-1 и управляющие (адресные) А 0, А 1, …, А k-1. Обычно 2k = n, где k и n – число адресных и информационных входов соответственно. Двоичный код, поступающий на адресные входы, определяет (выбирает) один из информационных входов, значение переменной с которого передается на выход y , т. е. мультиплексор реализует функцию:

Таблица функционирования, описывающая работу мультиплексора, имеющего, например, n = 4 информационных (Д 0, Д 1, Д 2, Д 3) и k = 2 адресных (А 0, А 1) входов, представлена в табл. 1.

Вариант схемной реализации мультиплексора “4-1” (“четыре в один”, т. е. коммутирующего данные от одного из четырех входов на единственный выход) и его условное графическое изображение представлены на рис. 1.

Здесь мультиплексор построен как совокупность двухвходовых конъюкторов данных (их число равно числу информационных входов), управляемых выходными сигналами дешифратора, дешифрирующего двоичный адресный код. Выходы конъюкторов объединены схемой ИЛИ.

https://pandia.ru/text/77/497/images/image005_121.gif" width="272 height=23" height="23"> (2)

Из (2) следует, что при любом значении адресного кода все слагаемые, кроме одного равны нулю. Ненулевое слагаемое равно Д i , где i – значение текущего адресного кода.

В соответствии с этим соотношением строятся реальные схемы мультиплексоров, одна из которых для мультиплексора “четыре в один” приведена на рис. 2. Как правило, схема дополняется входом разрешения работы – Е (показан пунктирной линией). При отсутствии разрешения работы (Е=0) выход у становится нулевым и не зависит от комбинации сигналов на информационных и адресных входах мультиплексора.

Мультиплексоры 4-1, 8-1, 16-1 выпускаются в составе многих серий цифровых интегральных схем и имеют буквенный код КП. Например, К555КП1 – мультиплексор 2-1 (в данном корпусе размещаются четыре мультиплексора), К555КП12 – мультиплексор 4-1 (в одном корпусе размещаются два мультиплексора) и т. д.

В тех случаях, когда функциональные возможности ИС мультиплексоров не удовлетворяют разработчиков по числу информационных входов, прибегают к их каскадированию с целью наращивания числа входов до требуемого значения. Наиболее универсальный способ наращивания размерности мультиплексора состоит в построении пирамидальной структуры, состоящей из нескольких мультиплексоров. При этом первый ярус схемы представляет собой столбец, содержащий столько мультиплексоров, сколько необходимо для получения нужного числа информационных входов. Все мультиплексоры этого столбца коммутируются одним и тем же адресным кодом, составленным из соответствующего числа младших разрядов общего адресного кода. Старшие разряды адресного кода используются во втором ярусе, мультиплексор которого обеспечивает поочередную работу мультиплексоров первого яруса на общий выход.

Пирамидальная схема, выполняющая функцию мультиплексора “16-1” и построенная на мультиплексорах “4-1”, показана на рис. 3.

1.2. Демультиплексоры

Демультиплексор – схема, выполняющая функцию, обратную функции мультиплексора, т. е. это комбинационная схема, имеющая один информационный вход (Д ), n информационных выходов (у 0, у 1, …, у n-1) и k управляющих (адресных) входов (А 0, А 1, …, А k-1). Обычно, также как и мультиплексоров, 2k = n. Двоичный код, поступающий на адресные входы, определяет один из n выходов, на который передается значение переменной с информационного входа (Д ), т. е. демультиплексор реализует следующие функции:

0 " style="border-collapse:collapse;border:none">

А 0, А 1

у 0 у 1 у 2 у 3

А 0, А 1

у 0 у 1 у 2 у 3

№ бригады

(вариант)

Размерность

Мультиплексора

Тип (базис) ЛЭ

ОФПН(И, ИЛИ, НЕ)

ОФПН(И, ИЛИ, НЕ)

№ бригады

(вариант)

Логическая функция

Равнозначность двух переменных

Неравнозначность двух переменных

3. Контрольные вопросы

1. Дайте определение мультиплексора и демультиплексора.

2. Перечислите применения мультиплексоров и демультиплексоров.

3. В чем суть каскадирования мультиплексоров? Объясните как на основе ИС мультиплексоров “8-1” спроектировать мультиплексор на 16, 32, и т. д. входов.

4. На основе ИС мультиплексора “8-1” спроектируйте схему, реализующую логическую функцию:

4.1. четности трехразрядного слова (четности числа единиц в трехразрядном слове);

4.2. нечетности трехразрядного слова;

4.3. у=х 1х 2+х 1х 3+х 2х 3.

5. Объясните как с помощью демультиплексора можно осуществить преобразование последовательного кода в параллельный.

6. Объясните как с помощью мультиплексора можно осуществить преобразование параллельного кода в последовательный.

7. Данные от одного из четырех источников должны последовательно передаваться по одной линии одному из трех приемников. Спроектируйте схемы и объясните работу ЦУ передающей и приемной сторон, обеспечивающих такую возможность.

Мультиплексор (MUX – multiplex- многократный) позволяет коммутировать в численном порядке информацию, поступающую с нескольких входных шин на одну выходную. С его помощью осуществляется временное разделение информации, поступающей по разным каналам.

Схема мультиплексора на 2 входа приведена на рис. 2.9.

Рис. 2.9 Схема двухвходового мультиплексора

– информационные входы

А – адресный вход

В зависимости от значения 1 или 0, подаваемых на адресный вход, на выходе Y формируется сигнал или . Это логическая структура мультиплексора вида 2:1. Читается: две линии к одной.

Логическая структура мультиплексора вида 4:1, составляющая ½ микросхемы К155КП2 приведена на рис. 2.10.

Рис. 2.10 Структурная схема мультиплексора вида 4:1

D 1 – D 4 – информационные входы

А, В – адресные входы

А – младший разряд

В – старший разряд

ЕI – разрешающий вход

Если EI=1, то на схемы И поступает 0 и мультиплексор не работает, то есть работа возможна только при EI=0.

В табл. 2.2 приведены все возможные сочетания входных воздействий и отклики мультиплексора.

Таблица 2.2

Мультиплексор вида 4:1

Входы Выход Y
Е А В
D1
D2
D3
D4

Мультиплексор К155КП1 имеет 16 информационных входов (D0 – D15) и четыре управляющих входа A, B, C, D, разрешающий вход V и один инверсный выход F. В зависимости от цифровой комбинации на управляющих входах сигналы с соответствующего информационного входа проходят в инвертированном виде на выход микросхемы. Передача информации возможна только при низком уровне на разрешающем входе.

Если требуется структура с большим количеством входов, то можно воспользоваться схемой наращивания разрядности, приведенной на рис. 2.11.

Рис. 2.1 Мультиплексор вида 32:1 на основе двух микросхем К155КП1

Адресными входами низших разрядов служат соединенные параллельно входы A, B, C и D. Разрешающие входы V в данном случае используются для подачи высшего (пятого) разряда Е: на первую микросхему в прямом виде, на вторую в инверсном. Первая микросхема работает при нулевом сигнале высшего разряда (Е=0); а вторая – при единичном (Е=1). Благодаря логическому элементу И-НЕ на выходе, выходные сигналы будут одинаковы с входными.

Мультиплексоры с Z-состоянием выходов легко позволяют увеличивать число коммутируемых каналов без привлечения дополнительных логических элементов для объединения выходов нескольких микросхем.

На рис. 2.12 приведена схема наращивания разрядности мультиплексора с использованием микросхем, имеющих Z-состояние выхода.

Рис. 2.12 Схема наращивания разрядности мультиплексоров, имеющих Z-состояние

Демультиплексоры

Демультиплексоры противоположны в функциональном отношении мультиплексорам, то есть их назначение распределить сигналы с одного информационного входа в желаемой последовательности по нескольким выходам.

Схема демультиплексора на 2 выхода представлена на рис. 2.13.

Рис. 2.13 Демультиплексор вида 1:2

Информационный вход

А – адресный вход

В зависимости от значения А информация поступает на или

Логические функции демультиплексора и дешифратора сходны между собой.

Дешифратор можно рассматривать как обращенный по входам демультиплексор, у которого адресные входы стали информационными, а бывший информационный вход стал управляющим.

Рассмотрим структуру демультиплексора-дешифратора, представленного на рис. 2.14.

Работу устройства описывают следующие булевые уравнения:

Рис. 2.14 Логическая структура демультиплексора 1:4 – дешифратора 2:4

A, B – адресные входы

Х – информационный вход

V – вход управления

В табл. 2.3 приведены режимы работы этой схемы в качестве демультиплексора и в качестве дешифратора.

Таблица 2.3

Таблица истинности демультиплексора-дешифратора

Входы Выходы
В А X V
DMX
DC

Типичным представителем демультиплексора - дешифратора является интегральная микросхема К155ИД3 (аналог 74154).

A, B, C, D – информационные входы

G1, G2 – разрешающие входы

Режим демультиплексора 1:16

G1 = 0, тогда G2 – информационный. Кодовая комбинация A-B-C-D переводит один из 16 выходов в активное состояние, которому соответствует логический 0, остальные выходы сохраняют логическую 1.

Существенно, что сигналы на активном выходе повторяют сигналы в прямом виде, поступающие на информационный вход.

Режим дешифратора 4:16

G1 = G2 = 0, тогда A-B-C-Dинформационные входы.

Если G1 или G2 равен 1, то на всех выходах, независимо от состояний входов A-B-C-D установится логическая 1.

Мультиплексоры и демультиплексоры (ДМХ) КМОП являются коммутаторами сигналов в прямом смысле, то есть могут передавать аналоговые сигналы.

MUX как универсальный логический элемент

Использование мультиплексора в качестве универсального логического элемента основано на общем свойстве логических функций независимо от числа аргументов всегда равняться логической единице или нулю. Если на адресные входы мультиплексора подавать входные переменные, зная, какой выходной уровень должен отвечать каждому сочетанию этих сигналов, то предварительно установив на информационных входах потенциалы нуля и единицы согласно программе, получим устройство, реализующее требуемую функцию.

Примеры применения мультиплексора

1. Преобразование параллельного кода в последовательный.

Одним из способов перехода от параллельного кода к последовательному может служить схема, приведенная на рис. 2.15.

Рис. 2.15 Схема преобразования параллельного кода Х 0 - Х 15 в последовательный

Генератор вырабатывает импульсы, которые поступая на счетчик СТ заставляют его триггеры последовательно менять свое состояние от 0000 до 1111. Параллельный шестнадцатиразрядный код, подлежащий преобразованию в последовательный, подается на входы Х 0 – Х 15 . Каждый из входов Х 0 – Х 15 соединяется с выходом MUX согласно списку состояний счетчика. Перебрав весь список, мы выведем последовательно на выход F все разряды параллельного кода.

2. Программируя информационные входы MUX согласно таблице истинности можно получить устройства, реализующие любую логическую функцию, содержащую до n+1 переменных, где n – число адресных входов мультиплексора.

Пример № 1 : Реализовать на MUX функцию, заданную таблицей истинности:

Видим, что в пределах одной большой строки аргумент «а» не меняется, а аргумент «b» колеблется 0-1. Оценим взаимосвязь поведения аргумента «b» и отклика функции Y. Очевидно, что в верхней строке Y повторяет значения b, а в нижней - противоположен. Следовательно, от мультиплексора требуется выполнение всего двух функций: b и b̅, а это в два раза уменьшает мощность применяемого МХ. Схема реализации той же задачи примет вид:

Каждый из рассмотренных способов решения имеет свои достоинства и недостатки. Так при решении задачи первым способом нам не потребуются дополнительные логические элементы – инверторы, а при втором способе потребуется один инвертор. Зато, как уже отмечалось, при втором способе решения требуется мультиплексор меньшей мощности.

Пример № 2: Функция трех переменных задана таблицей истинности:

Y Примечание
F 1 = 1
F 2 =
F 3 = 0
F 4 =

Расчленим мысленно таблицу истинности на группы по 2 строки в каждой (в каждой группе неизменны; аргумент может иметь 2 состояния; F принимает одно из четырех значений:

F 1 = 1, F 2 = , F 3 = 0, F 4 =

Если переменные сигналы подключить к адресным входам MUX А и В, а на информационные входы подать согласно таблице постоянные потенциалы логической единицы и нуля и переменные сигналы , то получим искомую схему.

Пример № 3: Таблицей истинности задана функция трех переменных (мажоритарный элемент)

a b с Y Примечание
F 1 = 0
F 2 = c
F 3 = c
F 4 = 1

Решение: расчленим мысленно таблицу истинности на группы по 2 строки в каждой (в каждой группе a и b неизменны; аргумент «c» может иметь 2 состояния; F принимает одно из трех значений:

F 1 = 0, F 2 = с, F 3 = с, F 4 = 1

Реализация на MUX 4:1 с разрешающим входом

Пример № 4 : Разработать схему компаратора двухразрядных чисел А и В. А = ; В=

F Примечание
F 1 =
F 2 = 0
F 3 =
F 4 = 0
F 5 = 0
F 6 =
F 7 = 0
F 8 =

Пример № 5: Сумматор на MUX . Составим таблицу истинности для сумм двух одноразрядных чисел А и В и функции переноса Р i . Разобьем на две строки, так, что А и В не меняют свое значение, а . Найдем и для каждой пары строк таблицы.

Входы Выходы
А В

Реализация: Воспользуемся MUX К155КП2 или 564КП1 имеющими 2 четырехвходовых MUX в одном корпусе.

Сумматоры

Это устройства, предназначенные для сложения чисел в двоичном и реже в 2-10 коде.

Классификация сумматоров:

1) По характеру действия: комбинационные (не имеющие памяти);

накопительные (сохраняющие результаты вычислений).

2) По способу обработки чисел: последовательного и параллельного типа.

3) По способу формирования сигнала переноса: с последовательным, сквозным и групповым переносом.

Полусумматор

S = - функция суммы

P = - функция переноса

S – бит суммы; Р – бит переноса;

HS – half sum – полусумматор.

Обозначение на схемах

Таблица истинности полусумматора.

Входы Выходы
А В Р S

Развернутая схема полусумматора приведена на рис. 2.16.

Рис. 2.16 Полусумматор

Полусумматор пригоден для сложения двух чисел только в младшем разряде. Как видно из схемы сложения двух многоразрядных чисел для n-го разряда необходим бит переноса . Поэтому полный сумматор должен иметь 3 входа.

Полный сумматор

Таблица истинности сумматора

Входы Выходы
А В

Схема полного сумматора на элементах М2 приведена на рис. 2.17.

Рис. 2.17 Полный сумматор на элементах М2

Сумматор можно выполнить и на простых логических элементах (рис. 2.18).

Рис. 2.18 Полный сумматор на элементарных логических элементах.

Условное обозначение одноразрядного сумматора

Сумматоры последовательного действия

Используется один общий для всех разрядов полный сумматор с дополнительной цепью задержки (рис. 2.19).

Рис. 2.19 Структура последовательного многоразрядного сумматора

Оба слагаемых кодируются последовательностями импульсов, которые синхронно вводятся в сумматор через входы А и В, начиная с младших разрядов.

Цепь временной задержки (л.з.) обеспечивает хранение импульса переноса на время одного такта, то есть до прихода пары слагаемых следующего разряда, с которыми он будет просуммирован.

Достоинство: малые аппаратные затраты.

Недостатки: 1) низкое быстродействие, так как одновременно суммируется лишь пара слагаемых;

2) для хранения А и В и преобразования последовательного кода выходных импульсов S в параллельный необходимы дополнительные аппаратные затраты.

Сумматоры параллельного типа

Схема сумматора параллельного типа с последовательным переносом приведена на рис. 2.20.

Рис. 2.20 Параллельный сумматор с трактом последовательного переноса

Число сумматоров равно числу разрядов слагаемых, поэтому слагаемые А и В складываются во всех разрядах одновременно, а перенос Р поступает с окончанием операции сложения в предыдущем разряде.

Недостатки: Ограниченное быстродействие, так как формирование сигнала переноса на выходе старшего разряда не может произойти до тех пор, пока сигнал переноса младшего разряда не распространится последовательно по всей схеме.

Уменьшение времени распространения сигнала переноса достигается тем, что для каждого двоичного разряда дополнительно находятся два сигнала: образования переноса G i и распространения переноса H i .

Мультиплексор – устройство, обеспечивающее соединение одного из информационных входов с единственным выходом. Входы мультиплексора делятся на две группы: информационные и адресую­щие. Номер информационного входа, который соединяется с выходом, задается в двоичном коде на адресных входах. Если мультиплексор имеет n адресных входов, то в нем может быть 2 n информационных входов.

Демультиплексор – устройство, обеспечивающее соединение одного из информационных выходов с единственным информационным входом. Номер информационного выхода, который соединяется со входом, задается в двоичном коде на адресных входах. Если демультиплексор имеет n адресных входов, то в нем может быть 2 n информационных выходов.

Функциональная схема демультиплексора, имеющего четыре выхода, приведена на рисунке 1.35,а, а его условное обозначение на принципиальных схемах – на рисунке 1.35,б.

Функциональная схема мультиплексора, имеющего четыре входа, приведена на рисунке 1.35,в, а его условное обозначение на принципиальных схемах – на рисунке 1.35,г. Мультиплексоры могут снабжаться дополнительным входом – входом разрешения передачи информации с входов на выход.

Для пояснения принципа работы мультиплексора посмотрим на таблицу истинности:

A1 A0 Q
D0
D1
D2
D3

Работа мультиплексора описывается соотношением, которое иногда называется мультиплексной формулой. При любом значении адресующего кода все слагаемые, кроме одного, равны нулю. Ненулевое слагаемое равно D i , где i - значение текущего адресного кода. Логическая функция, описывающая работу мультиплексора:

Мультиплексоры могут применяться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и заканчивая последним.

Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров в отечественных микросхемах используются одинаковые буквы - ИД.

Увеличение разрядности мультиплексоров при большом числе входных линий выполняют с помощью каскадно-пирамидального соединения мультиплексоров с меньшим числом входов (строят мультиплексорное дерево). Например, двухкаскадный мультиплексор 16:1 можно построить с использованием пяти мультиплексоров 4:1. Первый каскад из четырех мультиплексоров коммутирует 16 входов на 4 выхода, из которых во втором каскаде выбирается единственный. При этом усложняется схема управления.

Эти устройства являются комбинационными .


Шифраторы и дешифраторы

Эти устройства являются комбинационными .

Устройства, преобразующие одну разновидность кода в другую, называются преобразователями кодов . Например, существуют устройства, преобразующие прямой двоичный код в обратный и дополнительный коды. К преобразователям также относятся шифраторы и дешифраторы, осуществляющие кодирование и декодирование сигналов.

Двоичные дешифраторы преобразуют двоичный код в код «1 из N». В кодовой комбинации этого кода только одна позиция занята единицей, а все остальные – нулевые.

Двоичный дешифратор, имеющий n входов, должен иметь 2 n выходов, соответствующих числу разных комбинаций в n-разрядном двоичном коде. Если часть входных наборов не используется, то дешифратор называют неполным, и у него число выходов меньше 2 n .

В условном обозначении дешифраторов проставляются буквы DC (от английского Decoder). Входы дешифратора принято обозначать их двоичными весами. Кроме информационных входов дешифратор обычно имеет один или более входов разрешения работы обозначаемых как EN (Enable). При наличии разрешения по этому входу дешифратор работает описанным выше образом, при его отсутствии все выходы дешифратора пассивны. Если входов разрешения несколько, то сигнал разрешения работы образуется как конъюнкция сигналов отдельных входов.

Дешифратор (декодер) – преобразует код, поступающий на его входы, в сигнал только на одном из его выходов. Дешифратор n-разряд-ного двоичного числа имеет 2 n выходов. Функциональная схема дешифратора на 16 выходов приведена на рисунке 1.34,а. По такой функциональной схеме построена микросхема К155ИД3. Условное обозначение этой микросхемы на принципиальных схемах приведено на рисунке 1.34,б. Для преобразования сигнала необходимо на входы V1 и V2 микросхемы подать сигналы логических нулей.

Пусть на входе дешифратора присутствует двоичное число 1111. В этом случае на всех пяти входах элемента DD1.15 будут сигналы логических единиц, а на выходе этого элемента будет логический нуль. На выходах всех остальных 15 элементов будут сигналы логических единиц. Если хотя бы на одном из входов V логическая единица, то единицы будут на всех 16 выходах.

Система логических функций, показывающая работу дешифратора:

где Z n – выходы дешифратора

Х і – входы дешифратора

Шифратор (кодер) – устройство, представляющее собой преобразователь позиционного кода в двоичный (десятичного в двоичный).

Шифратор (кодер) преобразует сигнал на одном из входов в n-разрядное двоичное число. Функциональная схема шифратора, преобразующего десятичные цифры в 4-разрядное двоичное число, приведена на рисунке 1.33,а, а его условное обозначение – на рисунке 1.33,б. При появлении сигнала логической единицы на одном из десяти входов на четырех выходах шифратора будет присутствовать соответствующее двоичное число. Пусть сигнал логической единицы подан на вход 7. Тогда на выходах логических элементов DD1.1, DD1.2, DD1.3 будут сигналы логических единиц, а на выходе элемента DD1.4 – сигнал логического нуля. Таким образом, на выходах 8, 4, 2, 1 шифратора мы получим двоичное число 0111.



 


Читайте:



Flood Control ВКонтакте: рассказываем почему возникает проблема и как ее можно убрать Значит flood control

Flood Control ВКонтакте: рассказываем почему возникает проблема и как ее можно убрать Значит flood control

Быстрое решение Чаще всего такая ошибка выскакивает, когда ставишь лайк. Появляется окно Flood Control и лайк не ставится. Ошибка бывает и на...

Зарядное устройство на основе блока питания ATX Лабораторный блок питания на шим контроллере 3528

Зарядное устройство на основе блока питания ATX Лабораторный блок питания на шим контроллере 3528

Если раньше элементная база системных блоков питания не вызывала ни каких вопросов - в них использовались стандартные микросхемы, то сегодня мы...

Что делать если провод не заряжает айфон

Что делать если провод не заряжает айфон

Оригинальные зарядные устройства для устройств Apple стоят недешево, поэтому многие предпочитают использовать китайские копии, которые отличаются...

Виртуальная машина для Mac Виртуальная windows на mac os

Виртуальная машина для Mac Виртуальная windows на mac os

macOS – отличная операционная система, которая, как и «конкурентная» Windows или открытая Linux, имеет свои достоинства и недостатки. Любую из этих...

feed-image RSS