Главная - Windows
Параллельные вычисления. Методы параллельных вычислений Параллельные вычисления какую программу написать
вычисления программы на компьютере следует называть параллельными. Но это не единственный вопрос, на который хотелось бы получить ответ. Не менее важно понять, зачем вообще переходить из простого, хорошо знакомого, понятного мира последовательных вычислений к сложному для понимания миру параллельных вычислений. Какие преимущества есть у параллельных вычислений, и какие проблемы ждут программиста при создании программ, ориентированных на параллельные вычисления. Чтобы ответить на эти вопросы, давайте совершим небольшой экскурс в историю развития компьютеров.

Первые компьютеры были построены в соответствии с принципами, сформулированными Фон-Нейманом. Они имели три главных компонента - память , процессор и некоторый набор внешних устройств, обеспечивающих ввод и вывод информации.

Память была многоуровневой и для первых компьютеров содержала внешнюю память и внутреннюю память - оперативную и регистровую. Внешняя память (на магнитных лентах, перфокартах, дисках) позволяла сохранять программы и данные вне зависимости от того, включен компьютер или нет. Внутренняя память хранила информацию только на период сеанса работы с компьютером. При отключении компьютера содержимое внутренней памяти исчезало.

Для того чтобы программа могла быть выполнена на компьютере, она должна была быть загружена в оперативную память . Хранилась она там точно также как и данные, обрабатываемые этой программой. Принцип хранимой в памяти программы - один из главных принципов Фон-Неймановских компьютеров.

Регистровая память использовалась в момент выполнения вычислений. Прежде, чем выполнить некоторую операцию над данными, данные должны быть размещены на регистрах. Этот самый быстрый вид памяти обеспечивал необходимое быстродействие при выполнении операций над данными.

Выполнение всех операций - операций над данными и операций по управлению процессом вычислений - осуществлял процессор . Процессор компьютера обладал определенным набором команд. Этот набор был достаточно универсальным, чтобы вычислить любую потенциально вычислимую функцию. С другой стороны этот набор обеспечивал относительную простоту написания программ человеком.

Программы для первых компьютеров представляли последовательность команд, входящих в допустимый набор команд процессора. Выполнение программы на компьютере осуществлялось достаточно просто. В каждый момент времени на компьютере выполнялась одна программа . Процессор , в соответствии с программой, последовательно выполнял одну команду за другой. Все ресурсы компьютера - память , время процессора, все устройства - были в полном распоряжении программы, и ничто не могло вмешаться в ее работу (не считая конечно человека). Параллелизма не было и в помине.

Такая идиллия продолжалась недолго по причине неэффективного использования ресурсов крайне дорогих в те времена компьютеров. Компьютеры тогда не выключались, - одна программа сменяла другую.

Достаточно скоро у компьютера наряду с процессором, который стал называться центральным процессором, появились дополнительные процессоры, в первую очередь специализированные процессоры устройств ввода-вывода информации, отвечающие за выполнение наиболее медленных команд. Это дало возможность организации пакетного режима выполнения программ, когда на компьютере одновременно выполнялись несколько программ - одна программа могла печатать результаты работы, другая - выполняться, третья - вводить необходимые ей данные, например с магнитной ленты или другого внешнего носителя.

Революционным шагом было появление в 1964 году операционной системы фирмы IBM - OS 360. Появившаяся у компьютера операционная система стала его полновластным хозяином - распорядителем всех его ресурсов. Теперь программа пользователя могла быть выполнена только под управлением операционной системы. Операционная система позволяла решить две важные задачи - с одной стороны обеспечить необходимый сервис всем программам, одновременно выполняемым на компьютере, с другой - эффективно использовать и распределять существующие ресурсы между программами, претендующими на эти ресурсы. Появление операционных систем привело к переходу от однопрограммного режима работы к мультипрограммному, когда на одном компьютере одновременно выполняются несколько программ. Мультипрограммирование это еще не параллельное программирование , но это шаг в направлении параллельных вычислений.

Мультипрограммирование - параллельное выполнение нескольких программ. Мультипрограммирование позволяет уменьшить общее время их выполнения.

Под параллельными вычислениями понимается параллельное выполнение одной и той же программы. Параллельные вычисления позволяют уменьшить время выполнения одной программы.

Заметим, что наличие у компьютера нескольких процессоров является необходимым условием для мультипрограммирования. Существование операционной системы, организующей взаимную работу процессоров, достаточно для реализации мультипрограммирования. Для параллельных вычислений накладывается дополнительное требование - это требование к самой программе, - программа должна допускать возможность распараллеливания вычислений.

Появление операционной системы означало, что компьютер нельзя рассматривать только как "железо" ( память , процессоры, другие устройства). Теперь у него две составляющие - хард ( hard ) и софт ( soft ) - аппаратная и программная составляющие, взаимно дополняющие друг друга. За полвека существования компьютеров оба компонента стремительно развивались.

Для аппаратуры характерен экспоненциальный рост, что нашло отражение в известном эмпирическом законе Мура, - экспоненциально росли все важнейшие характеристики - объем памяти на всех уровнях, уменьшение времени доступа к памяти, быстродействие процессоров. Согласно закону Мура (Гордон Мур - один из основателей фирмы Intel) каждые полтора года значения характеристик увеличивались вдвое. Росло и число процессоров, включаемых в состав компьютера. Изменялась и архитектура компьютера . Эти изменения во многом были шагами в сторону распараллеливания вычислений. Вот лишь некоторые изменения в архитектуре процессоров, связанные непосредственно с процессом распараллеливания:

  • Конвейерная обработка команд. Процесс выполнения потока команд процессором уже не рассматривался как последовательное выполнение команды за командой. Обработка потока команд выполнялась на конвейере, так что сразу несколько команд готовились к выполнению. При конвейерной обработке команды, не связанные между собой по данным, могли выполняться одновременно, что является уже настоящим параллелизмом.
  • "Длинные команды". Архитектура некоторых компьютеров включала несколько процессоров, позволяющих выполнять логические и арифметические операции над целыми числами, несколько процессоров, выполняющих операции над числами с плавающей точкой. Длинная команда позволяла указать в одной команде действия, которые должен выполнить каждый из существующих процессоров. Опять таки, это позволяло реализовать параллелизм на аппаратном уровне.
  • Векторные и матричные процессоры. В набор команд таких процессоров включаются базисные операции над векторами и матрицами. Одной командой, например, можно сложить две матрицы. Такая команда фактически реализует параллельные вычисления. Приложения, где эти операции составляют основу обработки данных, широко распространены. Реализуемая аппаратно параллельная обработка данных позволяет существенно повысить эффективность работы приложений этого класса.
  • Графические процессоры. Еще одним важным видом приложений, где на аппаратном уровне происходит параллельное выполнение, являются приложения, интенсивно работающие с графическими изображениями. Эту обработку осуществляют графические процессоры. Графическое изображение можно рассматривать как набор точек. Обработка изображения зачастую сводится к выполнению одной и той же операции над всеми точками. Распараллеливание по данным легко реализуется в такой ситуации. Поэтому графические процессоры давно уже стали многоядерными, что позволяет распараллелить обработку и эффективно обрабатывать изображение.
  • Суперкомпьютеры. К суперкомпьютерам относят компьютеры с максимальными характеристиками производительности на данный момент. В их состав входят сотни тысяч процессоров. Эффективное использование суперкомпьютеров предполагает самое широкое распараллеливание вычислений.

В научных исследованиях и в новых технологиях всегда есть задачи, которым требуется вся мощь существующих вычислительных комплексов. Научный потенциал страны во многом определяется существованием у нее суперкомпьютеров. Понятие суперкомпьютера это относительное понятие. Характеристики суперкомпьютера десятилетней давности сегодня соответствуют характеристикам рядового компьютера. Сегодняшние суперкомпьютеры имеют производительность , измеряемую в петафлопсах (10 15 операций с плавающей точкой в секунду). К 2020 году ожидается, что производительность суперкомпьютеров повысится в 1000 раз и будет измеряться в экзафлопсах.

Классификация компьютеров

Мир компьютеров многообразен, начиная от миниатюрных встроенных компьютеров до многотонных суперкомпьютеров, занимающих отдельные здания. Классифицировать их можно по-разному. Рассмотрим одну из первых и простейших классификаций - классификацию Флинна, основанную на том, как устроена в компьютере обработка данных. Согласно этой классификации все компьютеры (вычислительные комплексы) можно разделить на четыре класса - компьютеры с архитектурой:

  • SISD (Single Instruction stream - Single Data stream) - одиночный поток команд - одиночный поток данных. К этому классу относятся обычные "последовательные" компьютеры с фон-Неймановской архитектурой, когда команды программы выполняются последовательно, обрабатывая очередной элемент данных.
  • SIMD (Single Instruction stream - Multiple Data stream) - одиночный поток команд - множественный поток данных. К этому типу относятся компьютеры с векторными и матричными процессорами.
  • MISD (Multiple Instruction stream - Single Data stream) - множественный поток команд - одиночный поток данных. К этому типу можно отнести компьютеры с конвейерным типом обработки данных. Однако, многие полагают, что такие компьютеры следует относить к первому типу, а компьютеры класса MISD пока не созданы.
  • MIMD (Multiple Instruction stream - Multiple Data stream) - множественный поток команд - множественный поток данных. Класс MIMD чрезвычайно широк и в настоящее время в него попадают многие компьютеры достаточно разной архитектуры. Поэтому предлагаются другие классификации, позволяющие более точно классифицировать компьютеры, входящие в класс MIMD.

Мы не будем рассматривать подробную классификацию компьютеров класса MIMD. Остановимся только на другом способе разделения компьютеров на три класса:

  • Мультипроцессорные вычислительные комплексы - это компьютеры, обладающие множеством процессоров, работающих на общей памяти. В этот класс входит большинство продаваемых сегодня на рынке многоядерных компьютеров.
  • Мультикомпьютерные вычислительные комплексы - представляют множество компьютеров, соединенных высокоскоростными линиями связи. Каждый компьютер обладает собственной памятью и обменивается сообщениями с другими компьютерами системы для передачи данных. В этот класс входят кластеры. Под кластером понимается вычислительный комплекс, рассматриваемый как единое целое, с некоторым выделенным компьютером, играющим роль сервера. Поскольку компьютеры, входящие в состав кластера, могут быть обычными компьютерами, то кластеры относительно недороги. Большинство входящих в Top 500 суперкомпьютеров являются кластерами.
  • Гибридные вычислительные комплексы - состоят из множества узлов, каждый из которых может быть мультикомпьютером, мультипроцессором, графическим или векторным процессором. Такие комплексы, как правило, являются суперкомпьютерами.

Как правило, алгоритм параллельной программы представляет собой последовательность параллельных и последовательных участков. Параллельная часть программы включает распределение данных и обмен данными, по схемам, определяемым параллельным алгоритмом программы. Последовательная часть программы, как правило, определяет арифметическую обработку данных на всех или отдельных процессах.

Зако́н Амдала - иллюстрирует ограничение роста производительности вычислительной системы с увеличением количества вычислителей.

«В случае, когда задача разделяется на несколько частей, суммарное время её выполнения на параллельной системе не может быть меньше времени выполнения самого длинного фрагмента». Согласно этому закону, ускорение выполнения программы за счёт распараллеливания её инструкций на множестве вычислителей ограничено временем, необходимым для выполнения её последовательных инструкций.

Пусть необходимо решить некоторую вычислительную задачу. Предположим, что её алгоритм таков, что доля от общего объёма вычислений может быть получена только последовательными расчётами, а, соответственно, доля может быть распараллелена идеально (то есть время вычисления будет обратно пропорционально числу задействованных узлов ). Тогда ускорение, которое может быть получено на вычислительной системе из процессоров, по сравнению с однопроцессорным решением не будет превышать величины

Пусть процессоры однородны по производительности. Т 0 – время выполнения последовательной части параллельного алгоритма, например, генерирование начальных данных и обработка полученного при решении задачи результата. Т 1 , Т 2 , ... Т p – время последовательной работы, выполняемой каждым процессором без взаимодействия между собой. Тогда время выполнения задачи на p процессорах определяется неравенством:

где i=1, 2, ... p. Равенство получается, когда Тi равны между собой . Отсюда, подставляя
T seq – T 0 , где T seq есть время выполнения задачи на одном процессоре , получаем T par ≥ T 0
.

Делим на T seq и, обозначая через f = T 0 / T seq - долю (fraction) последовательного участка в общем объеме вычислений, получим:
.(1.1)

Ускорение (Speedup ) – это отношение времени выполнения задачи в последовательном режиме (на 1 процессоре), ко времени выполнения задачи в параллельном режиме (на p процессорах).

, используя неравенство (1.1), получим
(1.2)

Отсюда видно, что при f=0 и равенстве T i получим S=p, при f >0 и p → ∞, получим
. Данная функция является монотонно-возрастающей по p и, значит, достигает максимума на бесконечности. Следовательно, ни на каком числе процессоров ускорение счета не может превысить обратной величины доли последовательного участка .

Рассматривая закон Амдаля, мы предполагали, что доля последовательных расчетов f является постоянной величиной и не зависит от параметра n, определяющего вычислительную сложность решаемой задачи . Однако для большого ряда задач доля f=f(n) является убывающей функцией от n , и в этом случае ускорение для фиксированного числа процессоров может быть увеличено за счет уменьшения доли последовательной работы, выполняемой каждым процессором. Иначе говоря, ускорение Sp= Sp(n) является возрастающей функцией от параметра n (данное утверждение часто называют эффектом Амдаля).

Эффективность распараллеливания- это способность алгоритма использовать все задействованные в выполнении задачи процессоры на 100%. Формула вычисления эффективности:


(1.2)

Т.е. если ускорение S = p (максимально возможное на p процессорной машине), то эффективность распараллеливания задачи равна 100%. Используя закон Амдаля получаем верхнюю оценку эффективности:

E ≤ 100%
(1.3)

Например, E ≤ 52.25% для p=100 и f=0.01 и E ≤ 9.1% для p=1000 и f=0.01.

Вывод . При малой долипоследовательной работыувеличение количества процессов приводит к ухудшению параллельной эффективности (причина – с ростом процессов растет количество обменов). Например, если f=0.01 (1%), то Е<100 и использовать для решения параллельной задачи более 100 процессоров нецелесообразно. Для повышения эффективности , как правило, не распараллеливают управляющие части программы или небольшие участки вычислений, которые требуют интенсивной синхронизации процессов.

Для оценки ускорения рассматривают еще одну характеристику, которую называют ускорением масштабирования (scaled speedup). Данная оценка может показать, насколько эффективно могут быть организованы параллельные вычисления при увеличении сложности решаемых задач.

Масштабирование (scalable) – это способность параллельного алгоритма эффективно использовать процессоры при повышении сложности вычислений. Задача является масштабируемой, если при росте числа процессоров алгоритм обеспечивает пропорциональное увеличение ускорения при сохранении постоянного уровня эффективности использования процессоров.

Масштабируемость – этопропорциональное увеличение объема задачи с увеличением числа используемых для ее решения процессоров. Наличие масштабируемости задач является важным свойством тестовых систем оценки производительности параллельных вычислительных систем.

Плохая масштабируемость параллельного приложения на MPP-системе может быть вызвана а) ростом затрат на коммуникации при увеличении числа используемых процессоров; б) неравномерностью распределения вычислительной нагрузки между процессорами.

При увеличении количества процессоров с сохранением размерности задачи увеличивается общее количество вызовов функций MPI в программе. При этом накладные расходы на формирование и отправку сообщений растут, а объем вычислений, приходящихся на один процессор, падает, что и вызывает уменьшение эффективности параллелизации. Все большее негативное влияние в условиях возросшего количества сообщений будет оказывать латентность сети. Для кластеров, узлы которых являются симметричными мультипроцессорами, можно попытаться снизить стоимость коммуникаций, заменив внутри каждого узла многопроцессорную обработку на многопоточную.

Оценим накладные расходы (total overhead), которые имеют место при выполнении параллельного алгоритма T 0 = P *Tp − T 1 , где T 1 - время выполнения последовательного алгоритма задачи, T p - время выполнения алгоритма задачи на P процессорах.

Накладные расходы появляются за счет необходимости организации взаимодействия процессоров, синхронизации параллельных вычислений и т.п.

Используя введенное обозначение, можно получить новые выражения для времени параллельного решения задачи и соответствующего ускорения:

Tp = (T 1 + T 0 )/P , Sp = T 1 / Tp = (P* T 1 )/(T 1 + T 0 )

Тогда эффективность использования процессоров можно выразить как

E P = Sp/P = T 1 / (T 1 + T 0 ) = 1/(1+ T 1 /T 0 )

Тогда, если сложность решаемой задачи является фиксированной (T 1 =const ), то при росте числа процессоров эффективность, как правило, будет убывать за счет роста накладных расходов T 0 . При фиксированном числе процессоров, эффективность можно улучшить путем повышения сложности решаемой задачи T 1 , поскольку предполагается, что при увеличении сложности накладные расходы T 0 растут медленнее, чем объем вычислений T 1 .

Таким образом, при увеличении числа процессоров в большинстве случаев можно обеспечить определенный уровень эффективности при помощи соответствующего повышения сложности решаемых задач. В этой связи, важной характеристикой параллельных вычислений становится соотношение необходимых темпов роста сложности расчетов и числа используемых процессоров.

Также важной характеристикой разрабатываемых алгоритмов является стоимость (cost ) вычислений, определяемая как произведение времени параллельного решения задачи и числа используемых процессоров.

2. Топология сети передачи данных. Примеры элементарных топологий, основные характеристики. Алгоритмы маршрутизации и методы передачи данных.

    При организации параллельных вычислений в мультикомпьютерах для организации взаимодействия, синхронизации и взаимоисключения параллельно выполняемых процессов используется передача данных между процессорами вычислительной среды. Временные задержки при передаче данных по линиям связи могут оказаться существенными (по сравнению с быстродействием процессоров) и, как результат, коммуникационная трудоемкость алгоритма оказывает существенное влияние на выбор параллельных способов решения задач.

    1. Примеры топологий сети передачи данных

Топология сети передачи данных – это структура линий коммутации между процессорами вычислительной системы. Топология представляет собой полный граф, в котором передача данных может быть организована между любыми двумя вершинами (процессорами сети). Топология определяется с учетом возможностей эффективной технической реализации на основе анализа интенсивности передачи информационных потоков. К числу типовых топологий обычно относят следующие схемы коммуникации процессоров (см. рисунок).

Полный граф (completely-connected graph or clique) – система, в которой между любой парой процессоров существует прямая линия связи, поэтому данная топология обеспечивает минимальные затраты при передаче данных, однако является сложно реализуемой при большом количестве процессоров.

Линейка (linear array or farm) – система, в которой все процессоры перенумерованы по порядку и каждый процессор, кроме первого и последнего, имеет линии связи только с двумя соседними (с предыдущим и последующим) процессорами; такая схема является, с одной стороны, просто реализуемой, а с другой стороны, соответствует структуре передачи данных при решении многих вычислительных задач (например, при организации конвейерных вычислений).

Кольцо (ring) – данная топология получается из линейки процессоров соединением первого и последнего процессоров линейки.

Звезда (star) – система, в которой все процессоры имеют линии связи с некоторым управляющим процессором; данная топология является эффективной, например, при организации централизованных схем параллельных вычислений.

Решетка (mesh) – система, в которой граф линий связи образует прямоугольную сетку (обычно двух - или трехмерную); подобная топология может быть достаточно просто реализована и, кроме того, может быть эффективно использована при параллельном выполнении многих численных алгоритмов (например, при реализации методов анализа математических моделей, описываемых дифференциальными уравнениями в частных производных).

Гиперкуб (hypercube) – данная топология представляет частный случай структуры решетки, когда по каждой размерности сетки имеется только два процессора; данный вариант организации сети передачи данных достаточно широко распространен в практике и характеризуется следующим рядом отличительных признаков:

а) два процессора имеют соединение, если двоичные представления их номеров имеют

только одну различающуюся позицию;

б) N-мерный гиперкуб может быть разделен на два (N-1)-мерных гиперкуба (всего возможно N различных разбиений);

в) кратчайший путь между любыми двумя процессорами имеет длину, совпадающую с количеством различающихся битовых значений в номерах процессоров (данная величина известна как расстояние Хэмминга).

Т.к. каждый процессор может принимать участие только в одной операции приема-передачи данных, то параллельно могут выполняться только те коммуникационные операции, в которых взаимодействующие пары процессоров не пересекаются между собой.

Плаксин М.А.

Национальный исследовательский университет Высшая школа экономики (Пермский филиал), г.Пермь, к.ф.м.н., доцент кафедры информационных технологи в бизнесе, mapl @ list. ru

«СУПЕРКОМПЬЮТЕРЫ» VS «ПАРАЛЛЕЛЬНОЕ ПРОГРАММИРОВАНИЕ». «ПАРАЛЛЕЛЬНОЕ ПРОГРАММИРОВАНИЕ» VS «СОВМЕСТНАЯ ДЕЯТЕЛЬНОСТЬ». КАК ИЗУЧАТЬ ТЕМУ «ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛЕНИЯ» В СРЕДНЕЙ ШКОЛЕ?

КЛЮЧЕВЫЕ СЛОВА

Информатика, параллельное программирование, параллельные вычисления, параллельные алгоритмы, суперкомпьютеры, начальная школа, средняя школа, ТРИЗформашка.

АННОТАЦИЯ

Статья посвящена вопросу о включении в школьный курс информатики темы «параллельные вычисления». Упоминается ряд возникающих при этом проблем, рассматривается цель изучения темы, отбор материала, некоторые предложения по методике обучения, механизмы апробации предложенной методики и накопленный опыт. Не затрагивается вопрос о месте этого материала в учебной программе.

Современный этап развития computer science связан с массовым распространением параллелизма вычислений на всех уровнях (многомашинные кластеры, многопроцессорные ЭВМ, многоядерные процессоры).

Массовое распространение параллелизма влечет серьезные последствия, которые еще предстоит выявить и проанализировать. Начнем с перечисления некоторых теоретических проблем.

Современная теория алгоритмов создавалась в расчете на понятие последовательного алгоритма. Каким образом отразится на понятии алгоритма отказ от требования последовательности выполнения шагов?

По крайней мере последние 20 лет понятие «алгоритм» вводилось в школе в неразрывной связке с понятием «исполнитель». Для последовательного алгоритма это естественно. Как быть с алгоритмом параллельным? Его выполняет один исполнитель или группа исполнителей? Для конкретности в качестве примера рассмотрим компьютерную обучающую программу «Танковый экипаж» . В этой программе от учащегося требуется запрограммировать действия экипажа танка, состоящего из трех человек: наводчика, водителя и заряжающего. Каждый из них имеет свою систему команд. Для того, чтобы выполнить боевую задачу (поразить все цели), все члены экипажа должны действовать согласованно. Пример игрового поля программы «Танковый экипаж» см. на рис.1.

Вопрос: надо ли рассматривать этих трех действующих лиц как независимых исполнителей или как три составные части (устройства) одного сложного исполнителя? Для экипажа танка более естественным представляется второй вариант, поскольку ни один персонаж сам по себе выполнить задание не в состоянии. Но как быть, если игра будет усложнена, и боевая задача будет поставлена сразу для двух танков? Для трех танков? Трех членов одного экипажа вполне можно рассматривать как три части одного исполнителя. Но каждый экипаж очевидно является самостоятельным исполнителем. Значит, параллельный алгоритм для нескольких танков будет выполняться сразу группой исполнителей. Получается, что для параллельного алгоритма рассматривать надо обе возможности: выполнение параллельных действий одним исполнителем и группой исполнителей. В случае танкового экипажа границу провести просто. Исполнитель - это тот, кто в состоянии решить поставленную задачу. Этот исполнитель может состоять из нескольких компонент, каждая из которых выполняет некую часть задания, но не может самостоятельно без помощи других компонент выполнить задание целиком. Но всегда ли разделение «целых исполнителей» и частей сложного исполнителя будет также просто - сейчас сказать нельзя.

Файл 1*ра Окне О программе

Вьполиеть все

Bbno.n«fTb до выделенной строки

Вернуть в начальное попаже**»

быпопнлтъ пошагово (после выполнения «.ладом команды несйкоа^« будет наждтъ кнопки гВ ыголг«п-ъ следующий uwr")

Ё ЬГВД iTHWTt. спеауюшнй шаг

Осглноснть пошаговое

Рис.1. Фрагмент игрового поля программы «Танковый экипаж»

Выделение частей исполнителя, способных к самостоятельным действиям, требует как-то эти части назвать. Причем название должно допускать рекурсию, поскольку действующие части исполнителя сами могут иметь сложную структуру.

Нужно договориться о термине для обозначения группы совместно действующих исполнителей. Термин «команда» не годится, ассоциируется с «системой команд исполнителя» и с «командами центрального процессора». «Коллектив исполнителей»? «Бригада исполнителей»?

Ш. Алгоритм

н Наезд1«; Водитель Заряжающий

1 Пмер^ть орун* по «освой сгклл V Стоп V Зарядить 1

г Пци V Стоп V Зарядить 2

3 Опт! V Повернуться прет« часовой стрелки на 90 градусов V Зарядить 1 V

Л V В перш V Зарядить? V

5 Огонь! V Стоп V Зарядить 1

Í П^чм V Ст*п V Зарясь? V

7 Огонь! V Стоп V Зарядить 1 V

3 Па^ V Повернуться па часовой стрелке на 45 градусов V Зарядить 2 V

S Пауя V Вперйа V Пауза V

10 Пвдэа V Вперед V Пауза ¿d

11 Плрл V Вперед V Пауза V

12 Паум V Повернуться по часовой стрелке на 45 градусов V Пауза V

13 Падм V Вперед V Пауза V

14 V n&stpHyTbtft то чксевн стрелке на 45 градус« V Зар^а^ьТ V

Рис.2. Фрагмент программы для «Танкового экипажа» (пример линеек команд) Требует доработки традиционное понятие «системы команд исполнителя» (СКИ) и само понятие команды. Если мы считаем, что три члена танкового экипажа образуют единого исполнителя, то что считать СКИ этого исполнителя? И что считать командой? Или оставить понятие СКИ для каждого персонажа? То есть это уже не система команд ИСПОЛНИТЕЛЯ, а система команд одной из компонент исполнителя (для которой еще нет названия)?

Понятие команды удобно расширить до «линейки команд». Пример линеек команд танкового экипажа см. на рис.2. Однако понятие «линейки команд» хорошо работает только для линейных алгоритмов. В остальных случаях линейки формируются динамически. Изобразить их в виде наглядной таблицы невозможно.

Среди свойств алгоритмов выделяется новая практически значимая характеристика: способность к распараллеливанию. Уточняющий вопрос - о возможной степени распараллеливания (до какой степени имеет смысл увеличивать количество процессоров при выполнении данного алгоритма).

Отдельный вопрос - методы распараллеливания уже существующих последовательных алгоритмов.

До недавнего времени параллельное программирование было уделом небольшого числа высоко квалифицированных системных программистов. Сегодня оно становится частью профессиональной компетенции. Но технология параллельного программирования существенно отличается от традиционного последовательного. В подтверждение этого утверждения вслед за Л.Л. Босовой процитируем крупнейшего российского специалиста в области параллельных вычислений В.В. Воеводина :

«... Освоение вычислительной техники параллельной архитектуры... молодыми специалистами идет с большими трудностями. На наш взгляд, это связано с тем, что знакомство с параллельными вычислениями, как и образование в этой области в целом, начинается не с того, с чего надо бы начинать. К тому же то, с чего надо начинать, не рассказывается ни в каких курсах вообще. Возможность быстрого решения задач на вычислительной технике параллельной архитектуры вынуждает пользователей изменять весь привычный стиль взаимодействия с компьютерами. По сравнению, например, с персональными компьютерами и рабочими станциями меняется практически все: применяются другие языки программирования, видоизменяется большинство алгоритмов, от пользователей требуется предоставление многочисленных нестандартных и трудно добываемых характеристик решаемых задач, интерфейс перестает быть дружественным и т.п. Важным является то обстоятельство, что неполнота учета новых условий работы может в значительной мере снизить эффективность использования новой и, к тому же, достаточно дорогой техники.»

«Важно лишь, чтобы обучающийся как можно раньше узнал, что существуют другие способы организации вычислительных процессов, а не только последовательное выполнение «операция за операцией», что на этих других способах строится самая мощная современная вычислительная техника, что только на такой технике удается решать крупные промышленные и научные задачи и т.д. Важно, в первую очередь, для того, чтобы как можно раньше обратить внимание обучающихся на необходимость критического отношения к философии последовательных вычислений. Ведь именно с этой философией им приходится сталкиваться на протяжении всего образования как в школе, так и в вузе. И именно эта философия мешает пониманию особенностей работы на вычислительной технике параллельной архитектуры.»

Сегодня нам нужны методики для массового обучения технологии параллельного программирования. Автор данной статьи считает, что в процессе обучения настало время для переворота в отношениях последовательного и параллельного программирования. До сих пор мы сначала учили последовательному программированию, а потом - распараллеливанию последовательных алгоритмов. Сейчас надо ставить вопрос о том, чтобы сразу учить параллельному программированию. А последовательный алгоритм рассматривать как некую часть параллельного алгоритма, которая не требует связи с другими его частями. Как это делать - вопрос открытый. Пока есть некоторые идеи, которые нуждаются в практическом воплощении и апробации. Есть надежда, что через год на следующей конференции можно будет обсудить полученные результаты.

Тридцать лет назад начинающаяся массовая компьютеризация производства потребовала увеличения уровня компьютерной грамотности населения. Это привело к введению в школьную программу в 1985 г. курса информатики. Но курс информатики в советском (затем в российском) исполнении не сводился к «кнопочной информатике» - к освоению технологии работы с пакетами прикладными программ и компьютерными играми. Он начал изменять стиль мышления подрастающего поколения. В первую очередь это касалось алгоритмичности, точности, строгости. Затем курс информатики вобрал в себя элементы логики и системного анализа. Впоследствии все это значительно упростило распространение так необходимого в XXI в. проектного подхода. Сейчас речь идет о том, что в течение следующего десятилетия параллельные алгоритмы должны стать

элементом общей культуры мышления. Вопрос: каким образом скажется на мышлении следующего поколения освоение понятия параллельного алгоритма, к чему приведет перестройка сознания «на параллельный лад»?

Массовое распространение параллельной обработки информации делает актуальным перемещение соответствующих понятий в разряд общедоступных и общекультурных. Знакомство с параллельными алгоритмами должно стать частью грамотности так, как это за последнюю четверть века произошло с базовыми понятиями теории алгоритмов. Сделать это можно только одним путем - включением соответствующих тем в школьный курс информатики. Значит, нужна методика начального знакомства с параллельным программированием на уровне средней школы.

Исторически первая попытка включения тематики параллельных вычислений в школьный курс информатики была сделана еще двадцать лет назад. Двадцать лет назад в курсе под названием «Алгоритмика» был описан исполнитель «Директор строительства», который командовал параллельными действиями нескольких бригад, строящих сооружение из блоков прямоугольной и треугольной формы. Более того, для этого исполнителя была создана программная реализация. Увы! Эта замечательная методическая разработка в середине 90-х оказалась не востребована. Она почти на двадцать лет опередила свое время!

Сегодня положение сложилось так, что тематика параллельных вычислений в средней школе в первую очередь оказалась связана с темой суперкомпьютеров. Именно на суперкомпьютерах акцентируют внимание учащихся авторы различных методических разработок , даже тогда, когда в этом нет необходимости. Достаточно сказать, что соответствующий раздел в журнале «Информатика в школе» носит название «Суперкомпьютерное образование в школе». Такая ситуация имеет как положительные, так и отрицательные стороны. Среди положительных сторон надо назвать:

Интерес, который вызывает в обществе, в том числе, в среде учащихся, тема суперкомпьютеров. Этот интерес повторяет на современном уровне интерес, который полвека назад вызывали большие машины - суперкомпьютеры своего времени;

Организационную поддержку со стороны суперкомпьютерного сообщества. Каждое лето на факультете вычислительной математики и кибернетики МГУ проводится Летняя Суперкомпьютерная Академия . И каждое лето в рамках этой Академии организуется школьный трек для учителей информатики. Обучение проводится бесплатно. Иногородние слушатели обеспечиваются жильем на весьма льготных условиях. На конференции Russian Supercomputing Days в сентябре 2015 г. была организована школьная секция и мастер-класс для учителей информатики. Последовательная организационная работа привела к выявлению и формированию группы учителей, заинтересованных в продвижении данной тематики;

Наличие яркого харизматичного лидера, каковым является Владимир Валентинович Воеводин - доктор физико-математических наук, профессор, член-корреспондент РАН, заместитель директора Научно-исследовательского вычислительного центра Московского государственного университета;

Интерес и поддержку (в том числе, материальную) со стороны российского представительства фирмы Интел и менеджера по стратегическому развитию фирмы Интел Игоря Олеговича Одинцова.

Недостаток «суперкомпьютерного» подхода заключается в зауживании тематики параллельных вычислений. Сами суперкомпьютеры школьникам, как правило, недоступны (разве что в крупных городах на них можно поглазеть на экскурсии). Задачи, на решение которых они нацелены, для школьников слишком сложны и, в большинстве случаев, не имеют непосредственной практической значимости и не представляют практического интереса.

Естественным расширением суперкомпьютерной тематики является изучение параллельного программирования. В настоящее время для выполнения параллельных программ совсем не обязательно иметь суперЭВМ. Достаточно многоядерного процессора или видеокарты с набором графических ускорителей. А это доступно уже почти всем. Из работ в этом направлении отметим кандидатскую диссертацию М.А. Соколовской по методике обучения будущих учителей информатики основам параллельного программирования и опыт Е.Ю. Киселевой по освоению школьниками технологии CUDA .

По мнению автора данной статьи сосредоточение внимания на спуерЭВМ и параллельном программировании существенно обедняет и усложняет тему параллельных вычислений, отвлекает учащихся от множества важных и доступных вопросов. Целью темы «параллельные

вычисления» в средней школе является не обучение «реальному» параллельному программированию (изучение соответствующих языковых конструкций, языков программирования и технологий), а ознакомление учащихся с соответствующим набором понятий и понимание особенностей параллельной работы. Мир вокруг и внутри нас представляет собой сложную параллельную систему. И эта система сама по себе дает массу материала для освоения понятий и механизмов параллелизма. Никакие сложные искусственные конструкции типа технологий MPI и OpenMP для этого не нужны. Школьная информатика должна воспитать мышление, настроенное на «параллельный лад». А дальше университет пусть закладывает в это мышление профессиональные знания, умения, навыки. В школе акцентировать имеет смысл не знакомство с суперкомпьютерами и изучение параллельного программирования, а освоение механизмов «совместной деятельности», постоянно и широко используемых в жизни. В курсе предлагается отразить следующие вопросы:

1) Совместная работа нескольких исполнителей (копание канавы несколькими землекопами) и распараллеливание «внутри» одного исполнителя при наличии нескольких обрабатывающих устройств (читаю и ем яблоко). В computer science это будут многомашинный комплекс и многоядерный процессор.

2) Виды параллелизма: параллелизм истинный и псевдопараллелизм (один процессор выполняет частями несколько программ).

3) Исполнители однотипные (землекопы) и разнотипные (экипаж танка).

4) Работы однотипные и разнотипные.

5) Соотношение «исполнители - работы»: 1 исполнитель - 1 работа, 1 исполнитель - N работ (псевдопараллельное выполнение или истинный параллелизм при наличии нескольких обрабатывающих устройств для разных работ), N исполнителей - 1 работа, N исполнителей - N работ.

6) Согласование деятельности исполнителей. Виды согласования: по частям работы, по времени, по результатам деятельности, по ресурсам.

7) Ресурсы. Ресурсы разделяемые и неразделяемые, расходуемые и повторно используемые. Утилизация потребленных ресурсов («сборка мусора» в широком смысле).

8) Выполнение одной и той же работы одним исполнителем и группой исполнителей. Зависимость скорости работы от количества исполнителей. Зависимость стоимости работы от количества исполнителей. Нелинейный рост скорости работы при росте количества исполнителей. Критический путь. Оптимальное количество исполнителей. Оптимальная загрузка исполнителей. Оптимальный порядок действий. Балансировка нагрузки.

9) Конкуренция исполнителей за ресурсы. Блокировка. Клинч (тупик).

10) Механизмы согласования действий исполнителей.

11) Псевдопараллельное выполнение процессов на компьютере (разделение между исполнителями-процессами одного ресурса - процессора).

12) Пригодность алгоритмов к распараллеливанию. Возможная степень распараллеливания. Существование алгоритмов, не поддающихся распараллеливанию.

Отметим, что приведенный список представляет собой частное мнение автора статьи и открыт для обсуждения, дополнения и корректировки. Более того, по мнению автора было бы очень полезно, чтобы «суперкомпьютерное сообщество» сформулировало «социальный заказ» для школы: какие именно знания-умения-навыки оно хочет видеть в выпускниках школы. Чем выпускник школы «суперкомпьютерного мира» должен отличаться от выпускника сегодняшнего? Будет заказ - будет и результат. Свежий пример. В первый день Russian Supercomputing Days-2015 в двух докладах прозвучала мысль, что быстродействие современных суперЭВМ определяется не мощностью процессоров (которая находится в центре внимания публики), а быстродействием оперативной памяти. Именно она становится бутылочным горлышком, пропускная способность которого определяет продуктивность всей системы. В результате на второй день конференции участники учительского мастер-класса обкатывали придуманную автором данной статьи игру, демонстрирующую взаимодействие центрального процессора, оперативной памяти и кэш-памяти. Порядок и форма изложения материала - вопрос открытый.

Материал должен быть продемонстрирован на примерах, не связанных с работой ЭВМ. Исполнители должны манипулировать материальными объектами.

Как можно большая часть обучения должна носить характер деловых (организационно-деятельностных) игр.

Выполнение этих требований упростит понимание изучаемого материала. Это будет полезно как при использовании данной методики на уроках информатики в школе (в том числе, начальной!), так и при обучении взрослых: учителей информатики и студентов. Школьник, школьный учитель, студент непрофильной специальности смогут остановиться на уровне ознакомления и понимания. Студент-профессионал должен будет сделать следующий шаг и от знакомства перейти к изучению этих механизмов на профессиональном уровне. Но это уже - шаг за пределы методики начального ознакомления с темой.

Работу над подготовкой методики изучения параллельных вычислений автор данной статьи начал в 2013 г. в ходе подготовки конкурса «ТРИЗформашка-2013» и продолжил в последующие годы .

(«ТРИЗформашка» - межрегиональный Интернет-конкурс по информатике, системному анализу и ТРИЗ. Проводится ежегодно во второй половине марта. Возраст участников - с I класса до IV курса. География - от Владивостока до Риги. Среднее число участников - 100 команд (300 чел.), максимальное - 202 команды (более 600 чел.). Сайт конкурса www. trizformashka . ru.) Тогда, в 2013 г. цель работы была сформулирована следующим образом:

1. В течение двух-трех лет подготовить описание исполнителей, набор игр и задач, связанных с параллельными вычислениями;

2. Предложить их (по частям, ежегодно) участникам конкурса;

3. Проанализировать их реакцию (оценить количество решавших, их возраст, успешность решения, типичные ошибки, обнаруженные неточности в формулировке задач и т.д.). Конкурс «ТРИЗформашка» оказался удобным инструментом отладки задач, поскольку

позволял получить реакцию всех возрастов (от I класса до IV курса), из различных регионов, из различных учебных заведений.

За прошедшие годы был подготовлен следующий набор методических инструментов и площадок для их апробации.

1. Задания на параллелизм, начиная с 2013 г., вошли в конкурс «ТРИЗформашка» (начиная с 2013 г., конкурс имеет подзаголовок «Параллельные вычисления»). Список типов заданий приведен ниже;

2. Подготовлена глава про параллелизм для новой версии учебника информатики для 4 класса . Материал прошел апробацию в 3-х и 4-х классах Лицея №10 г.Перми;

3. Разработана и с 2014 г. используется в конкурсе «ТРИЗформашка» компьютерная игра «Танковый экипаж» ;

4. Разработан и прошел апробацию ряд игр , в которых отражены следующие вопросы:

Согласование деятельности исполнителей. Различные виды согласования;

Выполнение одной и той же работы одним исполнителем и группой исполнителей. Зависимость скорости работы от количества исполнителей. Нелинейный рост скорости работы при росте количества исполнителей. Критический путь. Оптимальное количество исполнителей. Оптимальная загрузка исполнителей. Оптимальный порядок действий;

Ресурсы. Ресурсы разделяемые и неразделяемые;

Конкуренция исполнителей за ресурсы. Блокировка. Клинч (тупик). Были предложены и опробованы следующие типы задач :

1. Задачи на виды согласования. (Какие виды согласования существуют в школьной столовой?);

2. Игра «Танковый экипаж». Задание на построение параллельного алгоритма;

3. Исполнитель «Стройка» . Одновременно работающие бригады строят сооружение из горизонтальных и вертикальных балок. Задания включают в себя задания на исполнение указанного алгоритма, на разработку нового алгоритма, на поиск ошибок в заданном алгоритме, на исследование алгоритмов (сравнение сроков строительства по разным алгоритмам, сравнение стоимости строительства, оценка возможности сэкономить за счет перераспределения рабочей силы и др.);

4. Конкуренция за ресурсы. Три поросенка готовят каждый сам себе обед. Для каждого поросенка указано, какие блюда он готовит, какие ресурсы (оборудование, посуда и т.д.) ему для этого нужны и в течение какого времени эти ресурсы должны использоваться. Требуется составить график работы каждого поросенка, если он готовит на кухне один, если они готовят парами, если готовят все трое сразу. Время приготовления пищи должно быть минимизировано;

5. Сетевой график. Дан сетевой график. Требуется изобразить (схематически) сооружение, которое будет построено, определить, сколько дней потребуется для строительства при том или ином числе бригад, какая часть работы будет выполнена к определенному времени;

6. Ярусно-параллельные формы. Планирование работ по разным критериям. Дано задание на работу, производительность работников, правила оплаты. Требуется определить количество работников, нужных, чтобы выполнить работу в заданное время, определить срок работы при заданном количестве работников, определить количество работников, нужное для минимизации стоимости работ;

7. Диаграммы Ганта. Описан текстом план работ по реконструкции цеха: продолжительность и взаимная последовательность действий, требуемые работники. Требуется определить срок сдачи объекта, изменение срока при тех или иных изменениях в рабочей силе, список работников, задействованных на конкретную дату.

8. Согласование повторяющихся работ. Пусть дано задание в минимальный срок изготовить партию приборов, при условии, что каждый прибор должен пройти обработку на разном оборудовании, имеется разное количество оборудования с разной производительностью. Требуется спланировать время начала и работы каждого оборудования, минимизировать простои.

На сегодня имеем в наличии следующие результаты:

1. Сформулирован подход с изучению темы «параллельные вычисления»: идти не от проблем computer science, а «от жизни», делать акцент на «совместной деятельности»;

2. Сформулирован перечень вопросов, которые предлагается отразить в начальном курсе параллельных вычислений;

3. Сформулированы некоторые классы задач. На основании накопленного опыта можно оценить, какого рода задачи стоит придумывать;

4. Подготовлен набор задач названных классов. Задачи прошли апробацию в конкурсах «ТРИЗформашка» за 2013, 2014, 2015 гг. и/или в начальной школе (на занятиях с учениками третьих-четвертых классов лицея №10 г.Перми);

5. Подготовлен набор деловых игр. Игры прошли апробацию в начальной школе и на ряде мероприятий для учителей. В частности, были представлены на школьном треке Летней Суперкомпьютерной Академии ВМК МГУ в 2014 г., на мастер-классе для учителей на Russian Supercomputing Days-2015, на нескольких других конференциях (в том числе, на конференции ИТ-0бразование-2015 ассоциации АПКИТ) и других мероприятиях для учителей информатики;

6. Подготовлен набор текстов про параллелизм для учебника IV класса. Тексты прошли апробацию в лицее №10 г.Перми;

7. Подготовлена компьютерная игра «Танковый экипаж». Игра прошла апробацию в конкурсах «ТРИЗформашка» 2014 и 2015;

8. Конкурс «ТРИЗформашка» оправдал себя в качестве апробационной площадки;

9. Сформулирована задача «провести рокировку» в процессе обучения алгоритмизации: учить сразу параллельному программированию, представляя последовательный алгоритм частью параллельного. Есть мысли о том, как можно реализовать эту идею. Есть возможность опробовать эти идея в течение текущего учебного года (на учащихся 4-х - 5-х классов);

10. Есть потребность, желание и возможность продолжать работу.

Литература

1. Алгоритмика: 5-7 классы: Учебник и задачник для общеобразоват. учебных заведений /А.К. Звонкин, А.Г. Кулаков, С.К. Ландо, А.Л. Семенов, А.Х. Шень. - М.: Дрофа, 1996.

2. Босова Л.Л. Параллельные алгоритмы в начальной и основной школе. //Информатика в школе. 2015, №2. С.24-27.

3. Воеводин В.В. Вычислительная математика и структура алгоритмов: 10 лекция о том, поему трудно решать задачи на вычислительных системах параллельной архитектуры и что надо знать дополнительно. чтобы успешно преодолевать эти трудности: учебник. М.: Изд-во МГУ 2010.

4. Гаврилова И.В. Первое путешествие в «параллельный мир». //Информатика в школе. 2015, №6. С.16-19.

5. Дитер М.Л., Плаксин М.А. Параллельные вычисления в школьной информатике. Игра «Стройка». //Информатика в школе: прошлое, настоящее и будущее.: материалы Всеросс. науч.-метод. конф. по вопросам применения ИКТ в образовании, 6-7 февраля 2014 г. /Перм. гос. нац. иссл. ун-т. - Пермь, 2014. - С.258-261.

6. Иванова Н.Г., Плаксин М.А., Русакова О.Л. ТРИЗформашка. //Информатика. N05 Проверено 10.10.2015.

14. Плаксин М.А. Информатика: учебник для 4 класса: в 2 ч. /М.А.Плаксин, Н.Г.Иванова, О.Л.Русакова. - М.: БИНОМ. Лаборатория знаний, 2012.

15. Плаксин М.А. О методике начального знакомства с параллельными вычислениями в средней школе. //Информатика в школе: прошлое, настоящее и будущее.: материалы Всеросс. науч.-метод. конф. по вопросам применения ИКТ в образовании, 6-7 февраля 2014 г. /Перм. гос. нац. иссл. ун-т. - Пермь, 2014. - С.256-258.

16. Плаксин М.А. Комплекс деловых игр для знакомства с параллельными вычислениями в начальной школе. //Преподавание информационных технологий в Российской Федерации: материалы Тринадцатой открытой Всероссийской конференции «ИТ-0бразование-2015» (г.Пермь, 14-15 мая 2015 г.). Пермский государственный национальный исследовательский университет, - Пермь, 2015. С.60-62.

17. Плаксин М.А., Иванова Н.Г., Русакова О.Л. Набор заданий для знакомства с параллельными вычислениями в конкурсе «ТРИЗформашка». //Преподавание информационных технологий в Российской Федерации: материалы Тринадцатой открытой Всероссийской конференции «ИТ-Образование-2015» (г.Пермь, 14-15 мая 2015 г.). Пермский государственный национальный исследовательский университет, - Пермь, 2015. С. 232-234.

18. Соколовская М.А. Методическая система обучения основам параллельного программирования будущих учителей информатики.: автореф. дис. ... канд. пед. наук, Красноярск, 2012.

Аннотация: Что заставляет менять образование, параллельные вычисления на стыке дисциплин, последовательные вычисления маскируют проблемы развития, необходимость учить решать задачи эффективно, причина многих трудностей - незнание структуры алгоритмов, возможные пути изменения ситуации

Известно, что освоение вычислительной техники параллельной архитектуры, в особенности молодыми специалистами, идет с большими трудностями. На наш взгляд, это связано с тем, что знакомство с параллельными вычислениями, как и образование в этой области в целом, начинается не с того, с чего надо бы начинать. К тому же то, с чего надо начинать, не рассказывается ни в каких курсах вообще.

Возможность быстрого решения задач на вычислительной технике параллельной архитектуры вынуждает пользователей изменять весь привычный стиль взаимодействия с компьютерами. По сравнению, например, с персональными компьютерами и рабочими станциями меняется практически все: применяются другие языки программирования, видоизменяется большинство алгоритмов, от пользователей требуется предоставление многочисленных нестандартных и трудно добываемых характеристик решаемых задач, интерфейс перестает быть дружественным и т.п. Важным является то обстоятельство, что неполнота учета новых условий работы может в значительной мере снизить эффективность использования новой и, к тому же, достаточно дорогой техники.

Надо заметить, что общий характер трудностей, сопровождающих развитие параллельных вычислений, в целом выглядит таким же, каким он был и во времена последовательных. Только для параллельных вычислений все трудности проявляются в более острой форме. Во многом из-за большей сложности самой предметной области . Но, возможно, главным образом вследствие того, что к началу активного внедрения вычислительных систем параллельной архитектуры в практику решения больших прикладных задач не был построен нужный теоретический фундамент и не был развит математический аппарат исследований. В конце концов, из-за этого оказался своевременно не подготовленным весь образовательный цикл в области параллельных вычислений, отголоски чего проявляются до сих пор. Отсюда непонимание многочисленных трудностей освоения современной вычислительной техники, пробелы в подготовке нужных специалистов и многое другое.

Образование в области параллельных вычислений базируется на трех дисциплинах: архитектура вычислительных систем, программирование и вычислительная математика . Если внимательно проанализировать содержание соответствующих курсов, то неизбежно приходить к выводу, что не только по отдельности, но даже все вместе они не обеспечивают в настоящее время достижение главной пользовательской цели - научиться эффективно решать большие задачи на больших вычислительных системах параллельной архитектуры. Конечно, в этих курсах дается немало полезных и нужных сведений. Однако многое, что необходимо знать согласно современному взгляду на параллельные вычисления, в них не дается. Это, в частности, связано с тем, что ряд важнейших и даже основополагающих фактов, методов и технологий решения больших задач на больших системах возник как результат исследований на стыке нескольких предметных областей . Такие результаты не укладываются в рамки традиционных дисциплин. Поэтому, как следствие, излагаемые в соответствующих курсах сведения оказываются недостаточными для формирования целостной системы знаний, ориентированной на грамотное построение параллельных вычислительных процессов.

Все образовательные курсы, так или иначе связанные с вычислительной техникой или ее использованием, можно разделить на две группы. В первой группе излагаются базовые сведения, во второй - специальные. Базовые сведения носят универсальный характер и слабо классифицируются по типам вычислительной техники. Сформировались они на основе знаний о последовательных машинах и последовательных вычислениях и с течением времени меняются мало. В рамках курса по программированию базовые сведения начинают читаться с первого или второго семестра, в рамках курса по численным методам примерно с третьего семестра. Специальные курсы, в том числе относящиеся к вычислительным системам параллельной архитектуры, начинают читаться довольно поздно. Как правило, не ранее седьмого или даже девятого семестра.

На первый взгляд, все выглядит логично: сначала даются базовые сведения, затем специальные. Однако на практике разделение сведений на базовые и специальные оказывается весьма условным, поскольку важно только следующее: есть ли возможность получить нужные сведения в нужный момент или такой возможности нет и каков набор предлагаемых к изучению сведений.

Становление вычислительной математики имеет долгую историю. Но наиболее бурное ее развитие связано с электронными вычислительными машинами. Эти машины возникли как инструмент проведения последовательных вычислений. Интенсивно развиваясь, они по существу оставались последовательными в течение нескольких десятилетий. Для последовательных машин довольно рано стали создаваться машинно-независимые языки программирования. Для математиков и разработчиков прикладного программного обеспечения появление таких языков открывало заманчивую перспективу. Не нужно было вникать в устройство вычислительных машин, так как языки программирования по существу мало чем отличались от языка математических описаний. Скорость реализации алгоритмов на последовательных машинах определялась, главным образом, числом выполняемых операций и почти не зависела от того, как внутренне устроены сами алгоритмы. Поэтому в разработке алгоритмов становились очевидными главные целевые функции их качества - минимизация числа выполняемых операций и устойчивость к влиянию ошибок округления. Никакие другие сведения об алгоритмах были просто не нужны для эффективного решения задач на последовательной технике.

Все это на долгие годы определило основное направление развития не только численных методов, но и всей вычислительной математики. На фоне недостаточного внимания к развитию вычислительной техники математиками не было вовремя замечено важное обстоятельство: количественные изменения в технике переходят уже в такие качественные, что общение с ней при помощи последовательных языков скоро должно стать невозможным. Это привело к серьезному разрыву между имеющимися знаниями в области алгоритмов и теми знаниями, которые необходимы для быстрого решения задач на новейшей вычислительной технике. Образовавшийся разрыв лежит в основе многих трудностей практического освоения современных вычислительных систем параллельной архитектуры.

Сейчас вычислительный мир, по крайней мере, мир больших вычислений изменился радикально. Он стал параллельным. На вычислительных системах параллельной архитектуры время решения задач принципиально зависит от того, какова внутренняя структура алгоритма и в каком порядке выполняются его операции . Возможность ускоренной реализации на параллельных системах достигается за счет того, что в них имеется достаточно большое число функциональных устройств, которые могут одновременно выполнять какие-то операции алгоритма. Но чтобы использовать эту возможность, необходимо получить новые сведения относительно структуры алгоритма на уровне связей между отдельными операциями. Более того, эти сведения нужно согласовывать со сведениями об архитектуре вычислительной системы.

О совместном анализе архитектуры систем и структуры алгоритмов почти ничего не говорится в образовательных курсах. Если об архитектурах вычислительных систем и параллельном программировании рассказывается хотя бы в специальных курсах, то обсуждение структур алгоритмов на уровне отдельных операций в настоящее время не входит ни в какие образовательные дисциплины. И это несмотря на то, что структуры алгоритмов обсуждаются в научной литературе в течение нескольких десятилетий, да и практика использования вычислительной техники параллельной архитектуры насчитывает не намного меньший период. Естественно, возник вопрос о том, что же делать дальше. Ответ на него уже был дан раньше, но его полезно и повторить.

До сих пор специалистов в области вычислительной математики учили, как решать задачи математически правильно. Теперь надо, к тому же, учить, как решать задачи эффективно на современной вычислительной технике .

О том, какие сведения в области структуры алгоритмов необходимо знать дополнительно, говорилось в приведенных лекциях. На основе этого материала можно разработать разные программы модернизации образовательных курсов в интересах параллельных вычислений . Наиболее эффективная модернизация связана с проведением согласованных изменений нескольких курсов. Одна из программ, рассчитанная на подготовку высококвалифицированных специалистов по решению больших задач на больших системах, может выглядеть следующим образом:

  • чтение на первых курсах трех-четырех лекций "Введение в параллельные вычисления";
  • введение в базовые циклы по математике и программированию начальных сведений о параллельных вычислениях;
  • существенная перестройка цикла лекций по численным методам с обязательным описанием информационной структуры каждого алгоритма;
  • организация практикума по параллельным вычислениям;
  • чтение специального курса " Параллельная структура алгоритмов";
  • чтение специального курса "Параллельные вычисления".

Эта программа в определенном смысле максимальная. Тем не менее, она вполне реальная. Безусловно, ее нельзя целиком реализовать в каждом вузе. Но на ее основе для каждого конкретного вуза можно сформировать свою собственную программу образования в области вычислительных наук.

Из первых двух пунктов в образовательный цикл можно вводить как любой из них, так и оба сразу. Важно лишь, чтобы обучающийся как можно раньше узнал, что существуют другие способы организации вычислительных процессов, а не только последовательное выполнение "операция за операцией", что на этих других способах строится самая мощная современная вычислительная техника, что только на такой технике удается решать крупные промышленные и научные задачи и т.д. Важно, в первую очередь , для того, чтобы как можно раньше обратить внимание обучающихся на необходимость критического отношения к философии последовательных вычислений. Ведь именно с этой философией им приходится сталкиваться на протяжении всего образования как в школе, так и в вузе. И именно эта философия мешает пониманию особенностей работы на вычислительной технике параллельной архитектуры.

Начальные сведения о параллельных вычислениях вполне уместно включить в курс программирования. В нем можно обсудить простейшую модель параллельной вычислительной системы , рассказать о параллельных процессах и их характеристиках. Здесь же полезно ввести абстрактную форму описания вычислительных алгоритмов. Причем совсем не обязательно приводить конкретные ее наполнения. Об этом лучше поговорить позднее при изучении численных методов. Можно начать разговор о параллельных формах алгоритмов и их использовании. Все сведения о параллельных вычислениях, на наш взгляд, можно изложить в курсе программирования в двух-трех лекциях. Хорошим полигоном для демонстрации параллелизма в алгоритмах является курс линейной алгебры. В нем достаточно рано появляются матричные операции и метод Гаусса для решения систем линейных алгебраических уравнений. На соответствующих алгоритмах даже "на пальцах" можно продемонстрировать и параллелизм вычислений, и быстрые алгоритмы и многое другое. На обсуждение новых сведений потребуется суммарно не более одной лекции.

Не стоит перегружать первое знакомство с параллельными вычислениями большим количеством деталей и серьезными результатами. Главная цель данного этапа - лишь вызвать интерес к этой тематике. Достаточно дать общее представление о параллелизме вычислений, параллельных формах, графах алгоритмов и характеристиках вычислительных процессов. Если все начальные сведения объединить в единый цикл "Введение в параллельные вычисления", то их можно рассказать за три-четыре лекции. Но подчеркнем еще раз - доводить эти сведения до обучающихся необходимо как можно раньше.

Материалы данных лекций убедительно демонстрируют, насколько важно хорошее знание графов алгоритмов и их параллельных форм для понимания тех проблем, с которыми приходится сталкиваться при решении задач на современных вычислительных системах параллельной архитектуры. Изложение сведений об этом наиболее естественно включить в курсы по вычислительной математике. Основной аргумент в пользу такого решения связан с тем, что информационная структура алгоритмов описывается в тех же самых индексных системах, в которых происходит изложение и численных методов. По большому счету, к существующему курсу численных методов нужно добавить только сведения о графах алгоритмов, наборах разверток для них и технологию использования всего этого. Безусловно, подготовка обновленных курсов требует определенного труда. Но совсем не обязательно обсуждать структуры алгоритмов в полном изложении. Достаточно это сделать лишь для их вычислительных ядер. Понятие о графах алгоритмов и технологию нужно изложить, скорее всего, в самом начале курса. Однако граф и развертки желательно давать для каждого алгоритма. В дополнение к сказанному заметим, что одни и те же численные методы читаются без изменения в течение многих лет, а сведения об их структурах нужно подготовить только один раз. И эти сведения заведомо будут использоваться многократно, причем в самых разных областях.

Одним из самых трудных в техническом отношении и менее всего проработанным с методологической точки зрения является вопрос об организации практикума по параллельным вычислениям. Конечно, для его проведения нужно иметь вычислительную технику параллельной архитектуры. Но во многих вузах такая техника уже давно стоит, а окончательного мнения, каким должен быть практикум, тем не менее, все равно нет.

Одна из очевидных целей практикума лежит на поверхности. Вычислительные системы параллельной архитектуры создаются для решения больших задач. Следовательно, за время прохождения практикума нужно хотя бы в какой-то мере научиться решать такие задачи. Вроде бы все ясно. В общем курсе программирования или в каких-то специальных курсах даются знания по конкретным языкам или системам параллельного программирования. Во время практикума раздаются конкретные задания. Программы составляются, пропускаются на вычислительной системе и результаты сравниваются с эталоном. Однако даже в такой простой схеме имеются узкие места. В самом деле, что считать результатом? При решении больших задач на больших системах основную трудность представляет не столько получение математически правильного результата , сколько достижение нужного уровня ускорения . А это означает, что во время прохождения практикума нужно ко всему прочему научиться правильно оценивать эффективность составленных программ.

Если конкретная программа не показывает нужных характеристик эффективности, то возникает вопрос о дальнейших действиях. В этой ситуации почти всегда приходится приступать к более детальному изучению структуры алгоритмов. Возможно, именно изучение структуры алгоритмов должно стать ключевым звеном практикума . Оно стало бы хорошим подспорьем знакомству со структурой алгоритмов в модернизированных курсах по численным методам. Но есть и более веские аргументы в пользу более близкого знакомства со структурой алгоритмов.

Один из аргументов связан с текущими проблемами. В последнее время в практике вычислений стали широко использоваться различные многопроцессорные системы с распределенной памятью. К ним относятся не только кластеры, но и неоднородные сети компьютеров, сети компьютеров, объединенных через Интернет , и др. Во всех подобных системах узким местом являются обмены информацией между процессорами. Для эффективной работы необходимо, чтобы каждый процессор выполнял достаточно много операций и обменивался с памятью других процессоров относительно небольшими порциями данных. Мы уже отмечали в лекциях, что для обеспечения такого режима счета, достаточно знать граф алгоритма и, по крайней мере, две независимые развертки . Другими словами, нужно знать структуру алгоритмов.

Другой аргумент связан с возможной перспективой развития вычислительной техники. Скорости решения больших задач приходится повышать сегодня и заведомо придется повышать в будущем. Как правило, основные надежды связываются с созданием на основе различных технологических достижений более скоростных универсальных систем. Но повышать скорость работы вычислительной техники можно и за счет ее специализации . Уже давно практикуется использование спецпроцессоров, осуществляющих очень быструю реализацию алгоритмов быстрого преобразования Фурье, обработки сигналов, матричных операций и т.п. А теперь вспомним гипотезу о типовых структурах. Если она верна, то в конкретных прикладных областях можно будет выделить наиболее часто используемые алгоритмы и для них тоже построить спецпроцессоры. Тем самым открывается путь создания специализированных вычислительных систем для быстрого и сверхбыстрого решения задач из заданной предметной области .

Основная трудность введения в практикум заданий, связанных с изучением структуры алгоритмов, является отсутствие в настоящий момент доступного и простого в использовании программного обеспечения для построения графов алгоритмов и проведения на их основе различных исследований. По существу есть только одна система, которая реализует подобные функции. Это система V-Ray, разработанная в Научно- исследовательском вычислительном центре МГУ. Она дает возможность для различных классов программ строить графы алгоритмов и изучать их параллельную структуру. Система V-Ray реализована на персональном компьютере и не зависит от целевого компьютера. Последнее обстоятельство исключительно важно для организации практикума, поскольку частый выход с мелкими задачами на большие вычислительные системы не очень реален даже для вузов с хорошим техническим оснащением. На персональных же компьютерах время освоения задач практикума практически неограниченно. В настоящее время V-Ray представляет сложную исследовательскую систему. Далеко не все ее функции нужны для организации практикума. Со временем система V-Ray станет доступной для широкого использования. Информацию о ней и ее возможностях можно получить

Параллельные вычислительные процессы и системы (Лекция 13)

Виды параллелизма

Параллельная обработка данных имеет две разновидности: конвейерность и собственно параллельность.

Параллельная обработка. Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени.

Конвейерная обработка. Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых. Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получается очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят– ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5 + 99 = 104 единицы времени – ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Казалось бы, конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. Но, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость.

Реализация параллельных систем

Производительность компьютеров росла экспоненциально, начиная с 1945 года и до настоящего момента (если брать средний показатель за каждые 10 лет). Компьютерная архитектура претерпела значительные изменения, пройдя путь от последовательной до параллельной.

Производительность компьютера непосредственно зависит от времени, требующегося на выполнение основных функций и количество этих основных операций, которые могут быть выполнены одновременно. Время выполнения одной простейшей инструкции в конечном итоге ограничено.

Несложно сделать вывод, что нельзя ограничиваться увеличением скорости лишь за счет тактовой частоты процессоров. Зависимость от процессоров в конечном итоге заводит в тупик. Другая стратегия в этой области – использование внутреннего параллелизма в чипе процессора. Но такая технология очень дорога. Современные суперкомпьютеры основываются в большей степени на идее использование большого количества относительно не дорогих уже имеющихся процессоров.

Это подразумевает и такие системы, как: суперкомпьютеры, оборудованные тысячами процессоров; сети рабочих станций; мультипроцессорные рабочие станции и т.д.

Мультикомпьютер – это некоторое количество машин фон Неймана (узлов) связанных между собой сетью. Каждый компьютер выполняет свою программу. Эти программы могут иметь доступ к локальной памяти и умеют посылать и получать сообщения через сеть. Сообщения, используемые для связи между компьютерами, эквивалентны операциям чтения или записи с удаленной памятью. В идеализированной сети время доставки сообщения между машинами не зависит от расстояния между узлами или сетевого трафика, но зависит от длины отправляемого письма.

Определяющий параметр модели мультикомпьютера – это то, что доступ к локальной (в том же узле) памяти менее дорог, чем доступы к удаленной (находящейся в другом узле) памяти. Т.е. операции чтения и записи менее дороги, чем отправление или получение сообщений. Следовательно, желательно, чтобы обращение к локальным данным было гораздо более частым, чем к удаленным данным. Это фундаментальное свойство программного обеспечения называется локальностью. Значение локальности зависит от отношения стоимости дистанционного доступа к локальному.

Другие модели машин. Рассмотрим важнейшие компьютерные архитектуры. Мультикомпьютер очень похож на то, что часто называют компьютером с распределенной памятью MIMD (Multiple Instruction Multiple Data ). MIMD означает, что каждый процессор может обрабатывать отдельный поток инструкций над его собственными локальными данными. Распределенная память означает, что память распределена между процессорами. Принципиальным отличием MIMD компьютера от мультикомпьютера – это то, что стоимость доставки сообщения между двумя узлами не зависит от местоположения узла и сетевого трафика. Основные представители этого класса: IBM SP, Intel Paragon , Thinking Machines CM 5, Cray T 3D , Meiko CS -2, и CUBE .


Другой класс суперкомпьютеров – мультипроцессор или MIMD компьютер с разделяемой памятью. В мультипроцессоре все процессоры делят доступ к общей памяти, обычно через шину или через иерархию шин. В идеализированной модели параллельной машины с произвольным доступом (PRAM) часто используют теоретически изучаемые параллельные алгоритмы, любой процессор может получить доступ к любому элементу памяти в одно и то же время. Такая архитектура обычно подразумевает некоторые специальные формы устройства памяти. Количество обращений к разделяемой памяти уменьшается за счет хранения копий часто используемых данных в кэше, связанном с каждым процессором.

Доступ к этому кэшу намного быстрее, чем доступ к разделяемой памяти, следовательно, локальность очень важна. Программы, разработанные для мультикомпьютеров, могут так же эффективно работать на мультипроцессорах, потому что разделяемая память позволяет эффективную реализацию передачи сообщений. Представители этого класса – Silicon Graphics Challenge, Sequent Symmetry и многие мультипроцессорные рабочие станции.

Более специализированный класс параллельных компьютеров – это SIMD (Single Instruction Miltiple Data) компьютеры. В SIMD машинах все процессоры оперируют с одним и тем же потоком инструкций над различными порциями данных. Этот подход может уменьшить сложность программного и аппаратного обеспечения, но это имеет смысл только для специализированных проблем, характеризуемых высокой степенью закономерности, например обработка изображений и определенные виды цифрового моделирования. Алгоритмы, применимые на мультикомпьютерах, не могут в общих чертах эффективно выполняться в SIMD компьютерах.

Нейровычислительные системы.

Нейровычислительное устройство – это система, функционирование которой в максимальной степени ориентировано на реализацию нейросетевых алгоритмов. Основное отличие нейрокомпьютеров от других вычислительных систем – это обеспечение высокого параллелизма вычислений за счет применения специализированного нейросетевого логического базиса или конкретных архитектурных решений. Использование возможности представления нейросетевых алгоритмов для реализации на нейросетевом логическом базисе является основной предпосылкой резкого увеличения производительности нейрокомпьютеров.

Сейчас разработки цифровых нейрокомпьютеров наиболее активно ведутся по следующим направлениям:

· программная эмуляция нейросетевых алгоритмов на основе использования обычных вычислительных средств и ППО по моделированию нейросетей;

· программно-аппаратная эмуляция нейросетей на основе стандартных вычислительных средств с подключаемым виртуальным нейросетевым блоком, выполняющим основные нейрооперации, и ППО, осуществляющим функции общего управления;

· аппаратная реализация нейронных сетей.

Несмотря на то, что наибольшего эффекта при реализации нейросетевых алгоритмов удается добиться лишь с использованием нейрокомпьютеров третьего направления, их широкое применение ограничивается высокой. Например, нейрокомпьютер Synaps1 – один из представителей нейрокомпьютеров третьего направления, имеет мультипроцессорную архитектуру, оригинальное построение подсистемы памяти, а для выполнения вычислительных операций использует сигнальные процессоры и специальные сигнальные матричные процессоры МА16. За счет этого производительность нейрокомпьютера составила порядка несколько миллиардов умножений и сложений в секунду. Программное обеспечение данной системы включает в себя ОС Synaps1 с библиотекой нейроалгоритмов, а также ППО: базовую библиотеку НС, компилятор языка программирования нейроалгоритмов (nAPL) (набор библиотечных функций для С++) и т.п. Прикладные исследования показали, что использование нейрокомпьютеров третьего направления позволяет повысить производительность обычных вычислительных систем как минимум на три порядка и моделировать НС с миллионами соединений. Так, например, Synaps1 позволяет моделировать нейросеть с 64 миллионами синапсов с использованием различных активационных функций.

Два класса компьютерных систем, которые иногда используют как параллельные компьютеры – это локальная сеть (LAN), в которой компьютеры, находящиеся в физической близости (например, то же строение), связываются быстрой сетью, и глобальная сеть (WAN), в которой соединены географически удаленные компьютеры. Хотя системы такого типа доставляют дополнительные проблемы, такие как безопасность, надежность, они могут быть рассмотрены для различных целей как мультикомпьютеры, хотя и с высокой стоимостью удаленного доступа.

Сложности использования параллельных систем

Гигантская производительность параллельных компьютеров и супер-ЭВМ с лихвой компенсируется сложностями их использования.

У вас есть программа и доступ, скажем, к 256-процессорному компьютеру. Что вы ожидаете? Да ясно что: вы вполне законно ожидаете, что программа будет выполняться в 256 раз быстрее, чем на одном процессоре. А вот как раз этого, скорее всего, и не будет.

Закон Амдала. Предположим, что в программе доля операций, которые нужно выполнять последовательно, равна f, где 0<=f <=1 (при этом доля понимается не по статическому числу строк кода, а по числу операций в процессе выполнения). Крайние случаи в значениях f соответствуют полностью параллельным (f = 0) и полностью последовательным (f = 1) программам. Тогда для того, чтобы оценить, какое ускорение S может быть получено на компьютере из "p" процессоров при данном значении f, можно воспользоваться законом Амдала: если 9/10 программы исполняется параллельно, а 1/10 по-прежнему последовательно, то ускорения более, чем в 10 раз получить в принципе невозможно вне зависимости от качества реализации параллельной части кода и числа используемых процессоров (10 получается только в том случае, когда время исполнения параллельной части равно 0).

Следствие закона Амдала. Для того, чтобы ускорить выполнение программы в q раз, необходимо ускорить не менее, чем в q раз не менее, чем (1-1/q ) -ю часть программы. Следовательно, если есть желание ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение не менее, чем для 99.99% кода!

Таким образом, заставить параллельную вычислительную систему работать с максимальной эффективностью на конкретной программе это задача не из простых, поскольку необходимо тщательное согласование структуры программ и алгоритмов с особенностями архитектуры параллельных вычислительных систем.

Программирование параллельных систем

Модель машины фон Неймана предполагает, что процессор выполняет последовательность инструкций. Инструкции могут определять в дополнение к различным арифметическим операциям адреса данных, которые надо прочитать/записать в памяти, и/или адрес следующей инструкции, которую надо выполнить. Пока возможно только программировать компьютер с точки зрения этой основной модели, этот метод для большинства целей недопустимо сложен из-за того, что мы должны следить за миллионами позиций памяти и организовать выполнение тысяч машинных инструкций. Следовательно, прикладывается модульная техника разработки, посредством которой сложные программы создаются из простых компонент, и компоненты структуры с точки зрения абстракций более высокого уровня (такие, как структуры данных, итерационные циклы и процедуры). Абстракции (например, процедуры) делают эксплуатацию модульности легче, допуская объекты, которыми должны управлять без беспокойства для их внутренней структуры. Так сделаны высокоуровневые языки, как, например, Fortran, C, Ada и Java , которые допускают разработку, выраженную с точки зрения этих абстракций, которые переводятся автоматически в выполняемый код. Параллельное программирование вводит дополнительные источники сложности: если мы должны запрограммировать на самом низком уровне, нам нужно не только увеличить количество выполняемых инструкций, но также управлять выполнением тысяч процессоров и координированием миллионов межпроцессорных взаимодействий. Следовательно, абстракция и модульность по крайней мере так же важны, как и в последовательном программировании. Фактически, мы выделим модульность как четвертое фундаментальное требование для параллельного программного обеспечения, дополнительно к параллелизму, масштабируемости, и локальности.

Основные абстракции, используемые в параллельном программиро-вании, сводятся к задачам и каналам:

1.Параллельное вычисление состоит из одной или более задач. Задачи выполняются параллельно. Количество задач может меняться во время выполнения программы.

2.Задача изолирует последовательную программу и локальную память. Вдобавок набор вводов и выводов определяет свой интерфейс в своей среде.

3.Задача может выполнять четыре основных действия дополнительно к чтению и записи в локальной памяти: послать сообщение на свои порты вывода, получить сообщение со своих портов ввода, создать новые задачи и уничтожить (завершить) задачу.

4.Операция отправления сообщения – асинхронная, она завершается немедленно. Операция получения – синхронная, она вызывает выполнение задачи, блокируя процесс, пока сообщение не будет получено.

5.Пары ввода/вывода могут связываться сообщениями в очереди, называемыми каналами. Каналы могут создаваться и удаляться, и ссылки на каналы (порты) способны включаться в сообщения, так что связность изменяется динамически.

6.Задания могут отображаться в физических процессорах различными способами; отображающее применение не влияет на семантику программы. Конкретно многочисленные задания могут отображаться в единственном процессоре (можно также представить, что единичная задача может быть отображенной в множестве процессоров, но эта возможность здесь не учитывается.)

Абстракция задач требует свойство локальности: данные, содержащиеся в локальной памяти задачи – «закрытые»; другие данные – «удаленные». Канальная абстракция обеспечивает механизм для указания, вычисление каких данных из одной задачи требуется для начала работы другой задачи. (Это охарактеризовано зависимостью данных). Модель задач и каналов обладает и некоторыми другими свойствами:

Производительность . Последовательные абстракции программирования, такие как, например, процедуры и структуры данных, эффективны из-за того, что они могут быть отображены просто и эффективно в компьютере фон Неймана. Задачи и каналы имеют аналогично прямое распределение в мультикомпьютере. Задача представляет часть кода, который может быть выполнен последовательно в единственном процессоре. Если две задачи, которые делят канал, отображаются в других процессорах, канальное соединение осуществлено как межпроцессорное соединение; если они отображаются в том же процессоре, могут быть использованы некоторые более эффективные механизмы.

Независимость распределения . Поскольку задания взаимодействуют, используя тот же механизм (каналы) независимо от положения задачи, результат вычисленный программой не зависит от того, где задача выполняется. Следовательно, алгоритмы могут разрабатываться и осуществляться без беспокойства о количестве процессоров, на которых они будут выполняться; фактически, алгоритмы часто разрабатываются так, что создают гораздо больше задач, чем процессоров. Это простой путь достижения масштабности: когда количество процессоров увеличивается, количество задач на процессор уменьшается, но сам алгоритм не должен быть модифицирован. Когда имеется большее число задач, чем процессоры смогли бы обслуживать, чтобы замаскировать задержки связи, обеспечиваются другие вычисления, которые могут выполняться, пока выполняется связь для доступа к удаленным данным.

Модульность . В модульном составлении программы различные компоненты программ разрабатываются отдельно как независимые модули и затем объединяются, чтобы получить полную программу. Взаимодействие между модулями ограничивается отчетливо выраженными интерфейсами. Следовательно, модульные реализации могут быть изменены без модификации других компонент, и свойства программы могут определяться из спецификации ее модулей и кода, который соединяет эти модули вместе. Когда успешно приложена модульная разработка, уменьшается программная сложность и облегчается многократное использование кода.

Детерминизм . Алгоритм или программа детерминированы, если при выполнении с конкретным вводом всегда получается один и тот же вывод. Он недетерминирован, если многочисленные выполнения с тем же вводом могут дать другой вывод. Хотя недетерминизм иногда полезен и должен поддерживаться, параллельная модель программирования, которая облегчает написание детерминированных программ, очень желательна. Детерминированные программы имеют тенденцию быть более понятными. Также при проверке на правильность должна вычисляться только одна последовательность выполнения параллельной программы, а не все возможные для выполнения.



 


Читайте:



Цветомузыка на arduino Цветомузыка на микроконтроллере avr

Цветомузыка на arduino Цветомузыка на микроконтроллере avr

Cветомузыка на контроллере atmega8, привлекла внимание своей простотой в изготовлении. При повторении схемы не было необходимости рассчитывать...

Что делать, если Mac греется на Windows Охлаждаем MacBook на Windows

Что делать, если Mac греется на Windows Охлаждаем MacBook на Windows

Многие пользователи Mac, вероятно, сталкивались с ситуацией, когда была настолько высокой, что, казалось, он сейчас взлетит. Обычно это не...

Ваш Mac начнёт дико тормозить, но это можно избежать

Ваш Mac начнёт дико тормозить, но это можно избежать

Для владельцев аймаков, миников, макбуков и всех, кого беспокоит чрезмерная температура своих устройств.UPD: все что написано ниже, конкретно...

Какие особенности игры на европейском сервере Archeage

Какие особенности игры на европейском сервере Archeage

Компания Trion Worlds в 2013 году начала работу над локализацией корейской игры ArcheAge, сразу же открыв предварительную запись на бета-тест. 17...

feed-image RSS