Главная - Smart tv
Программа дисциплины «Радиотехнические цепи и сигналы. Гоноровский И

«УТВЕРЖДАЮ»

Проректор по учебной работе

­­­­­_____________В.Г.Прокошев

«____»______________2011г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
«Радиотехнические цепи и сигналы»

(наименование дисциплины)

Направление подготовки 210400 «Радиотехника»
Профили подготовки «Радиотехника», «Радиофизика»
Квалификация (степень) выпускника Бакалавр
Форма обучения очная


Семестр

Трудоемкость

(зач.ед./час.)


Лекций (час.)

Практ. занятий

(час.)


Лаборат. работ

(час.)


Курс. раб. (час.)

СРС

Форма контроля

(экз./зачет)


4

4/144

34

17

17

---

76

Зачет

5

3/108

17

17

17

30

27

Экзамен, зачет (кр)

Итого

7/252

51

34

34

30

103

Экзамен, зачет (кр)

Владимир, 2011


  1. Цели освоения дисциплины
Дисциплина «Радиотехнические цепи и сигналы» является фундаментальным курсом, посвященным спектральному и корреляционному анализу детерменированных и случайных сигналов и их преобразования в различных линейных и нелинейных устройствах. Полученные знания могут быть использованы в процессе изучения специальных радиотехнических дисциплин, а также при анализе радиотехнических сигналов в процессе разработки и эксплуатации радиосистем.

Целью освоения дисциплины «Радиотехнические цепи и сигналы» является: привитие студентам, во-первых, г лубокого понимания свойств различных радиосигналов и радиоцепей, сущности и особенностей процессов происходящих при прохождении сигналов через радиотехнические цепи; во-вторых, умения аналитически описывать, анализировать и экспериментально исследовать процессы в радиоцепях на основе излучаемых в курсе методов и методик, тем самым закладывается фундамент теоретических и практических знаний и умений, используемых при изучении студентами специальных дисциплин по специальности «Радиотехника». Подготовка в области радиотехники для разных сфер профессиональной деятельности специалиста:


  • проектно-конструкторской;

  • производственно-технологической;

  • научно-исследовательской;

  • организационно-управленческой;

  • монтажно-наладочной;

  • сервисно-эксплуатационной.

В задачу дисциплины входит обучение студента знаниям по


  • классификации, фундаментальным свойствам и основным характеристикам радиосигналов и радиоцепей во временной и частотных областях, законам преобразования сигналов в различных радиоцепях;

  • методам анализа передачи детерменированных и случайных колебаний через линейные (с постоянными параметрами), параметрические, нелинейные и дискретные цепи, границы применимости и свойства методов;

  • способам заложения и извлечения информации из радиосигналов, принципам построения устройств для этих целей, источникам и способам уменьшения ошибок и искажений передаваемого сообщения;

  • основам синтеза цепей;

  • методам оптимальной фильтрации сигналов;

  1. Место дисциплины в структуре ООП ВПО

Дисциплина «Радиотехнические цепи и сигналы» относится к общепрофильным дисциплинам:


  • Код УЦ ООП учебного цикла основной образовательной программы (раздела) – Б3;

  • Профессиональный цикл;

  • Базовая (общеобразовательная) часть.

Взаимосвязь с другими дисциплинами

Курс «Радиотехнические цепи и сигналы» основывается на знании «Математики», «Физики», «Электроники», «Цифровых устройств и микропроцессоров», «Схемотехники аналоговых электронных устройств», «Основ теории цепей», «Электродинамики и распространения радиоволн» и является базой для изучения «Передатчиков и устройств формирования сигналов», «Устройств приема и обработки сигнала», «Радиотехнических систем», «Радиоавтоматики» и др.


  1. Компетенции обучающегося. Формируемые в результате освоения дисциплины

В результате освоения дисциплины обучающийся должен обладать следующими общекультурными компетенциями (ОК)


  • Способностью владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения (ОК-1)

  • Способностью логически верно, аргументировано и ясно строить устную и письменную речь (ОК-2)

  • Способностью к кооперации с коллегами, работе в коллективе (ОК-3)

  • Способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ОК-10),
а также следующими профессиональными компетенциями (ПК)

  • Способностью представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики (ПК-1)

  • Способностью выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат (ПК-2)

  • Готовностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности (ПК-3)

  • Способность владеть методами решения задач анализа и расчета характеристик электрических цепей (ПК-4)

  • Способностью владеть основными приемами обработки и представления экспериментальных данных (ПК-5)

  • Способностью собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии(ПК-6)

  • Способностью осуществлять сбор и анализ исходных данных для расчета и проектирования деталей, узлов и устройств радиотехнических систем(ПК-9)

  • Готовностью выполнять расчет и проектирование деталей, узлов и устройств радиотехнических систем в соответствии с техническим заданием с использованием средств автоматизации проектирования (ПК-10)

  • Готовностью организовывать метрологическое обеспечение производства (ПК-16)

  • Способностью осуществлять сбор и анализ научно-технической информации, обобщать отечественный и зарубежный опыт в области радиотехники, проводить анализ патентной литературы(ПК-18)

  • Способностью реализовывать программы экспериментальных исследований, включая выбор технических средств и обработку результатов (ПК-20)

  • Способностью выполнять задания в области сертификации технических средств, систем, процессов, оборудования и материалов (ПК-25)

  • Способностью проводить поверку, наладку и регулировку оборудования и настройку программных средств, используемых для разработки, производства и настройки радиотехнических устройств и систем (ПК-27)

  • Способностью принимать участие в организации технического обслуживания и настройки радиотехнических устройств и систем (ПК-29)

  • Готовностью осуществлять поверку технического состояния и остаточного ресурса оборудования, организовывать профилактические осмотры и текущей ремонт (ПК-30)

  • Способностью разрабатывать инструкции по эксплуатации технического оборудования и программного обеспечения (ПК-32)

В результате освоения дисциплины обучающийся должен:
Знать:


  • основные типы активных приборов, их модели и способы их количественного описания при использовании в радиотехнических цепях и устройствах;

  • методы анализа цепей постоянного и переменного тока во временной и частотной областях;

  • основные методы измерения характеристик радиотехнических цепей и сигналов, оценки их надежности и точности;

  • основные виды детерминированных и случайных сигналов в радиотехнике и методы их преобразования;


  • стандартные пакеты прикладных программ, ориентированных на решение научных и проектных задач радиоэлектроники;

  • принципы построения устройств обработки сигналов в радиосистемах и комплексах различного назначения;

Уметь:


  • использовать стандартные пакеты прикладных программ для решения практических задач;

  • применять компьютерные системы и пакеты прикладных программ для проектирования и исследования радиотехнических устройств;

  • применять статистические теории обнаружения- различения сигналов, оценивания их параметров и фильтрации информационных процессов;

  • использовать теорию оптимального приема сигналов при проектировании радиосистем передачи информации;

Владеть:


  • методами и средствами разработки и оформления технической документации;

  • моделями активных приборов, используемых в радиотехнике;

  • методами анализа электрических цепей в стационарном и переходном режимах;

  • спектральными методами анализа детерминированных и случайных сигналов и их преобразований в электрических цепях;

  • типовыми программными средствами для автоматизации проектирования и моделирования радиоэлектронных цепей, устройств и систем;

  • статистическими методами анализа и синтеза радиотехнических систем и устройств.

  1. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Теоретический курс

4.1.1. Введение
Требования учебного плана и рабочей программы по дисциплине. Баллы рейтинговый системы аттестации студентов. Рекомендации по изучению курса, взаимосвязь с другими дисциплинами.

Литература. Структурная схема системы передачи информации. Основные радиотехнические процессы. Основные понятия, термины и определения.

Предмет и задачи дисциплины, ее место в системе знаний инженера. Роль радиотехники в научных разработках и в промышленном производстве.

Требования к курсовой работе.
4.1.2. Основные характеристики сигналов. Классификация сигналов.
Типовые радиотехнические цепи. Критерии классификации. Детерминированные и случайные, непрерывные, дискретные, квантованные и цифровые сигналы, управляющие и модулированные колебания. Особенности распространения радиоволн различных диапазонов.
4.1.3. Спектральный анализ периодических сигналов.
Обобщенный ряд Фурье. Гармонический анализ периодических сигналов.
4.1.4. Спектральный анализ непериодических сигналов.
Преобразование Фурье и его свойства.
4.1.5. Распределение мощности в спектре периодического сигнала и энергии в спектре непериодического сигнала
Независимость средней мощности периодического сигнала от фаз отдельных гармоник. Равенство Парсеваля. Соотношение между длительностью сигнала и шириной спектра (лемма Римана). Примеры.
4.1.6. Единичный импульс и единичный скачек
Понятие о дельта-функции (импульсе) как предельном выражении некоторых импульсов единичной площади. Дельта-функция во временной и частотной областях, ее спектр и свойства. Единичный скачек, способы его введения, связь с дельта-функцией, спектр. Выводы.
4.1.7. Корреляционный анализ детерминированных колебаний.
Понятие корреляционной функции детерминированного сигнала, ее свойства, связь со спектральной характеристикой. Взаимная корреляционная функция. Когерентность. Примеры.
4.1.8. Дискретизация сигналов. Теорема и ряд Котельникова.
Представление сигналов с ограниченной частотной полосой в виде ряда Котельникова. Число степеней свободы сигнала. Теорема отсчетов в частотной области.
4.1.9. Линейные радиоцепи с постоянными параметрами.
Определение и основные свойства линейных цепей. АЧХ и ФЧХ апериодического и резонансного усилителей. Методы определения АЧХ и ФЧХ. Примеры. Идеальные и реальные дифференцирующие и интегрирующие цепи, их АЧХ и ФЧХ, применения операционных усилителей. Сравнение временных характеристик идеальных и реальных цепей.
4.1.10. Линейные цепи с обратной связью.
Основные характеристики систем с обратной связью. Критерии устойчивости. Отрицательная обратная связь. Системы с задержкой в цепи с обратной связью. Импульсная характеристика идеального и реального гребенчатого фильтра.
4.1.11. Радиосигналы, АМ-колебания и их спектры.
Условия медленности изменения амплитуды, фазы, частоты. АМ-колебания, основные понятия и определения. Амплитудная модуляция. Спектр и векторная диаграмма АМ-колебания при модуляции гармоническим и сложным сигналом. Примеры.
4.1.12. Угловая модуляция. Спектр колебания с УМ.
Фаза и мгновенная частота колебания. Спектр колебания при УМ. Спектр сигнала. Связь ФМ и ЧМ. Радиоимпульс с ЛЧМ сигналом с большой базой.
4.1.13. Спектр колебания при смешанной амплитудно-угловой модуляции.
Общее представление таких колебаний. Спектр колебания при смешанной амплитудно-фазовой модуляции гармоническим сигналом одной частоты (2 случая). Причины несимметрии спектра.
4.1.14. Огибающая, частота и фаза узкополосного колебания.
Многозначность определения огибающей и фазы узкополосного колебания. Установление неоднозначности введением дополнительного, сопряженного по Гильберту сигнала. Основные соотношения. Свойства огибающей, определение мгновенной частоты и фазы колебания по заданному сигналу. Пример бигармонического колебания.
4.1.15. Аналитический сигнал.
Обобщение понятия комплексной амплитуды. Понятие комплексной огибающей. Аналитический (комплексный) сигнал и его связь с заданным физическим сигналом, свойства и связь спектров исходного сигнала, огибающей, комплексной огибающей и аналитического сигнала. Свойства аналитического сигнала и преобразования Гильберта.
4.1.16. Дискретизация узкополосного колебания по Котельникову.
Связь периода (частоты) выборок со спектром огибающей и фазы модулированного колебания. Различие в информационной емкости сигналов с различными видами модуляции.
4.1.17. Прохождение детерминированных колебаний через линейные цепи с постоянными параметрами.
Методы анализа прохождений колебаний в линейных цепях. Спектральный метод. Пример. Метод интеграла наложения. Пример.
4.1.18. Воздействие радиосигналов на избирательные цепи.
Особенности передачи сигналов через избирательные цепи. Приближенный спектральный метод, упрощенный метод интеграла наложения. Особенности их применения.
4.1.19. Искажение модулированных колебаний в избирательных цепях.
Искажения АМ-сигналов. Искажения ФМ и ЧМ-сигналов. Метод мгновенной частоты на примере резонансного усилителя.
4.1.20. Нелинейные цепи и методы нелинейной теории. Нелинейные элементы, их характеристики и свойства.
Нелинейные элементы. Аппроксимация нелинейных характеристик. Преобразования спектра в цепи с резистивным нелинейным элементом при действии одного и двух синусоидальных напряжений. Теория комбинационных частот. Нелинейная цепь с фильтрацией.
4.1.21. Получение и детектирование АМ-колебаний.
Получение АМ_колебаний. Детектирование АМ-колебаний. Условия неискаженного детектирования колебаний.
4.1.22. Частотные и фазовое детектирование, преобразование частоты сигналов, синхронное детектирование.
Принципы построения частотных и фазовых детекторов, особенности преобразователей частоты синхронное детектирование сигнала.
4.1.23. Структура автоколебательной системы.
Определение колебательной системы. Структура автогенератора. Механизм возникновения автоколебаний. Условия баланса фаз и амплитуд. Установившийся режим генератора. Мягкий и жесткий режим генератора. Мягкий и жесткий режимы самовозбуждения. Стабильность частоты. Нелинейное уравнение автогенератора. Автогенераторы с колебательным контуром, с внутренней обратной связью, РС-генераторы. Угловая модуляция в автогенераторе.
4.1.24. Параметрические цепи.
Принципы реализации параметрических цепей и их основные свойства. Прохождение колебаний через параметрические цепи. Передаточная функция.
4.1.25. Импульсная характеристика параметрической цепи.
Получение импульсной характеристики для цепи первого порядка. Пример. Отличия от цепи с постоянными параметрами.
4.1.26. Принцип параметрического усиления.
Принцип параметрического усиления. Получение схемы замещения реактивности, изменяющийся по гармоническому закону. Одноконтурный параметрический усилитель.
4.1.27. Применение параметрических цепей.
Параметрические модуляторы, детекторы, преобразователи частоты.
4.1.28. Характеристики случайных колебаний.
Классификация случайных процессов. Законы распределения случайных процессов. Стационарные случайные процессы. Эргодическое свойство.
4.1.29. Описание случайных сигналов в частотной и временной областях.
Спектральная плотность мощности и корреляционная функция случайного процесса. Теорема Винера-Хинчина. Модель случайного процесса в виде «белого шума». Примеры.
4.1.30. Узкополосные случайные процессы.
Разложение сигнала на квадратурные независимые составляющие. Получение законов распределения корреляционной функции огибающей, частоты и фазы узкополосного нормального шума.
4.1.31. Марковские процессы.
Основные определения. Обобщенное уравнение Маркова. Области применения марковских процессов.
4.1.32. Преобразование характеристик случайного процесса.
Определение спектральной плотности мощности и корреляционной функции выходного сигнала. Воздействие «белого» шума на линейные цепи.
4.1.33. Распространение суммы гармонических колебаний со случайными фазами.
Метод характеристических функций и его применение для оценок распределение суммы гармонических колебаний со случайными фазами.
4.1.34. Нормализация случайных процессов в узкополосных цепях.
Воздействие последовательности одинаковых импульсов со случайной фазой на узко-полосную систему, воздействие ЧМ-колебания со случайным периодом модуляции на узкополосную систему. Условия, при которых будет происходить нормализация. Денормализация.
4.1.35. Воздействие суммы гармонического сигнала и шума на амплитудный детектор.
Закон распределения и корреляционная функция шума, прошедшего детектор. Основные соотношения при прохождении через детектор аддитивной смеси сигнала шума. Отношение сигнал/помеха.
4.1.36. Воздействие сигнала и шума на частотный детектор и амплитудный резонансный ограничитель.
Статические характеристики сигнала на выходе цепи. Отношение сигнал/помеха на выходе при различных соотношениях на выходе.
4.1.37. Преобразование закона распределения и энергетического спектра в безинерционном нелинейном элементе.
Преобразование закона распределения в линейном элементе с однозначной и неоднозначной обратной характеристикой. Методы отыскивания энергетических характеристик процесса на выходе нелинейной цепи.
4.1.38. Оптимальная фильтрация на фоне помех.
Понятие об основных задачах статистической радиотехники на примерах различных систем. Согласованная фильтрация заданного сигнала. Неравенство Шварца.
4.1.39. Частотные и временные характеристики согласованного фильтра. Физическая осуществимость.
Частотная характеристика фильтра и ее связь с частотным спектром входного сигнала. Импульсная характеристика фильтра и ее связь с входным сигналом. Критерий Пэли-Винера.
4.1.40. Сигнал и помеха на выходе согласованного фильтра.
Форма полезного сигнала на выходе. Корреляционные функции детерминированных сигналов. Примеры.
4.1.41. Примеры построения согласованных фильтров.
Синтез и отыскание сигнала на выходе согласованных фильтров, когда на входе пачка одинаковых импульсов, импульс с ЛЧМ. Гребенчатый фильтр.
4.1.42. Формирование сигнала сопряженного с заданным фильтром.
Принцип формирования сигнала согласованного с данным фильтром.
4.1.43. Фильтрация заданного сигнала при «не белом шуме».
Процедура отбеливания шума. Построение согласованного фильтра.
4.1.44. Коды Баркера.
М- позиционные коды. Структурная схема согласованного фильтра для кода Баркера.
4.2. Практические занятия
Практические занятия ориентированы на решение задач и примеров, соответствующих теоретическому курсу и служащих для применения полученных знаний к решению прикладных задач. Введены расчетные задания по некоторым разделам с привлечением вычислительной техники с целью облегчения и ускорения вычислительной работы, исследования нелинейных задач, не поддающихся аналитическому решению, моделированию процессов и цепей.
Тема 1. Спектральный анализ периодических сигналов.

Цель занятий: Применение рядов Фурье для спектрального анализа периодических сигналов различной формы. В аудитории студенты получают навыки по определению спектров сигналов. Итогом занятия является умение студентов определить амплитудный и фазовый спектр периодических сигналов.
Тема 2. Спектральный анализ непериодических сигналов.

Цель занятий: Применение интегрального преобразования Фурье для спектрального анализа непериодических сигналов. При определении спектров сигналов студенты получают навыки анализа спектра управляющих сигналов, учатся определять эффективную ширину спектра сигналов.
Тема 3. Передача сигналов через линейные цепи с постоянными параметрами.

Цель занятий: Анализ прохождения сигналов через линейные цепи. Студенты учатся применять спектральный метод интеграла положения при анализе передачи сигналов через линейные цепи, знакомятся с импульсными характеристиками различных линейных цепей с постоянными параметрами.
Тема 4. Анализ амплитудно-модулированных сигналов.

Цель занятий: Изучение структуры спектра АМ-колебаний. Студенты на занятии определяют спектры АМ-колебаний с различными огибающими, спектральные и векторные диаграммы АМ-сигналов.
Тема 5. Анализ радиосигналов с угловой модуляцией.

Цель занятий: Изучение структуры спектра колебаний при угловой модуляции. Студенты учатся различать радиосигналы с фазовой и частотной модуляцией, определять эффективную ширину спектра таких радиосигналов.
Тема 6. Передача радиосигналов через избирательные цепи.

Цель занятий: Получение навыков применения методов анализа передачи радиосигналов через избирательные цепи. Анализ базируется на приближенных характеристиках избирательных цепей – амплитудно-частотной и импульсной. Дается сравнение с точными методами.
Тема 7. Аппроксимация вольт-амперных характеристик нелинейных цепей.

Цель занятий: Изучение возможных режимов работы нелинейных элементов. На основании этого студенты получают навыки по разработке схем модуляторов, детекторов, смесителей.
Тема 8. Модуляция и демодуляция.

Цель занятий: расчет схем модуляторов и демодуляторов. Студенты знакомятся с практическими схемами не нелинейных элементах, с помощью которых осуществляется преобразование сигналов и методиками их расчета.
Тема 9. Случайные процессы. Характеристики случайных процессов.

Цель занятий: Получение навыков применение теории вероятности к анализу случайных процессов. Студенты знакомятся с законами распределения вероятности радиосигналов, определяют их числовые характеристики.
Тема 10. Передача случайных процессов через линейные цепи.

Цель занятий: Получение навыков анализа характеристик случайного процесса при передаче его через линейные цепи. Студенты изучают и применяют методы анализа для различных целей.
Тема 11. Передача случайных процессов через нелинейные цепи.

Цель занятий: Изучение передачи случайных процессов через типовые радиотехнические узлы. Студенты должны рассчитывать характеристики случайных сигналов при передачи их через цепи – нелинейный элемент плюс нагрузка (типовые узлы).
Тема 12. Согласованные фильтры.

Цель занятий: Освоение методик отклика согласованного фильтра на заданный сигнал и синтез структуры фильтра для некоторых сигналов. Студенты рассчитывают корреляционные функции различных сигналов, синтезируют согласованные фильтры для заданных сигналов, определяют отношение сигнал/помеха на входе и выходе фильтра.
4.3. Лабораторные работы.
Лабораторный практикум по курсу «Радиотехнические цепи и сигналы» рассчитан на закрепление теоретических знаний, получение навыков и изучение методик экспериментальных исследований, различных сигналов, цепей и их характеристик, и предусматривает выполнение 8 лабораторных работ по 4 академических часа (два отводится для самостоятельной работы по составлению плана экспериментальных исследований по теме, предложенной преподавателей). Работы выполняются в два цикла, бригадами из 2-3 студентов (с учетом разбиения академической группы на 2 подгруппы).

По выполненной работе каждым студентом оформляется отчет АО установленной форме. Своевременная защита работ – основание для зачета по лабораторному практикуму.

Тема 1. Типовые линейные радиотехнические цепи.

Тема 2. Спектральный анализ.

Тема 3. Модуляция сигналов.

Тема 4. Транзисторные автогенераторы.

Тема 5. Прохождение амплитудно-модулированных колебаний через избирательные цепи.

Тема 6. Законы распределения случайных процессов.

Тема 7.Корреляционный анализ сигналов.

Тема 8. Преобразование корреляционных функций в линейных радиотехнических цепях.

4.4. Курсовая работа.
В типовой курсовой работе студенты расчитывают сигнал и его спектр на выходе конкретной радиоцепи или находят оптимальный вариант фильтра по заданному сигналу и шуму.

В курсовом проекте необходимо:


страница 1

Издание третье, переработанное и дополненное

Допущено Министерством высшего и среднего специального образования СССР в качестве учебника для студентов радиотехнических специальностей вузов

МОСКВА «СОВЕТСКОЕ РАДИО» 1977

Книга является учебником по курсу «Радиотехнические цепи и сигналы» для вузов радиотехнической специальности. В связи с введением новой программы этого курса данное издание коренным образом переработано и дополнено следующими новыми разделами: дискретная и цифровая обработка сигналов; аппроксимация процессов и характеристик функциями Уолша; синтез радиотехнических цепей.

Особое внимание уделено разделам, посвященным статистическим явлениям в радиотехнических цепях. Методически переработаны разделы по спектральному и корреляционному анализу детерминированных и случайных сигналов, а также по теории их преобразования в линейных, параметрических и нелинейных устройствах.

Хотя книга предназначена для студентов радиотехнических факультетов вузов, она может быть также полезна широкому кругу специалистов, работающих в области радиоэлектроники и в смежных областях науки и техники.

Гоноровский И. С. Радиотехнические цепи и сигналы. Учебник для вузов. Изд. 3-е, перераб. и доп. М., «Сов. радио», 1977, 608 с.

Предисловие к третьему изданию

Глава 1. ВВЕДЕНИЕ
1.1. Основные области применения радиотехники
1.2. Передача сигналов на расстояние. Особенности распространения радиоволн и используемые в радиотехнике частоты
1.3. Основные радиотехнические процессы
1.4. Аналоговые, дискретные и цифровые сигналы и цепи
1.5. Радиоцепи и методы их анализа
1.6. Проблема помехоустойчивости канала связи
1.7. Задачи и содержание курса

Глава 2. СИГНАЛЫ
2.1. Общие замечания
2.2. Разложение произвольного сигнала по заданной системе функций
2.3. Гармонический анализ периодических колебаний
2.4. Спектры простейших периодических колебаний
2.5. Распределение мощности в спектре периодического колебания
2.6. Гармонический анализ непериодических колебаний
2.7. Некоторые свойства преобразования Фурье
2.8. Распределение энергии в спектре непериодического колебания
2.9. Примеры определения спектров непериодических колебаний
2.10. Соотношение между длительностью сигнала и шириной его спектра
2.11. Бесконечно короткий импульс с единичной площадью (дельта-функция)
2.12. Спектры некоторых неинтегрируемых функций
2.13. Представление сигналов на плоскости комплексной переменной
2.14. Представление сигналов с ограниченной частотной полосой в виде ряда Котельникова
2.15. Теорема отсчетов в частотной области
2.16. Корреляционный анализ детерминированных сигналов
2.17. Соотношение между корреляционной функцией и спектральной характеристикой сигнала
2.18. Когерентность

Глава 3. РАДИОСИГНАЛЫ
3.1. Общие определения
3.2. Радиосигналы с амплитудной модуляцией
3.3. Частотный спектр амплитудно-модулированното сигнала
3.4. Угловая модуляция. Фаза и мгновенная частота колебания
3.5. Спектр колебания при угловой модуляции. Общие соотношения
3.6. Спектр колебания при гармонической угловой модуляции
3.7. Спектр радиоимпульса с частотно-модулированным заполнением
3.8. Спектр колебания при смешанной амплитудно-частотной модуляции
3.9. Огибающая, фаза и частота узкополосного сигнала
3.10. Аналитический сигнал
3.11. Корреляционная функция модулированного колебания
3.12. Дискретизация узкополосного сигнала

Глава 4. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ СИГНАЛОВ
4.1. Общие определения случайных процессов
4.2. Виды случайных процессов. Примеры
4.3. Спектральная плотность мощности случайного процесса
4.4. Соотношение между энергетическим спектром и корреляционной функцией случайного процесса
4.5. Взаимно-корреляциониая функция и взаимный энергетический спектр двух случайных процессов
4.6. Узкополосный случайный процесс
4.7. Колебание, модулированное по амплитуде случайным процессом
4.8. Колебание, модулированное по фазе случайным процессом. Плотность вероятности

Глава 5. ЛИНЕЙНЫЕ РАДИОЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ
5.1. Вводные замечания
5.2. Определения и основные свойства активной цепи
5.3. Активный четырехполюсник как линейный усилитель
5.4. Транзисторный усилитель
5.5. Усилитель на электронной лампе
5.6. Апериодичесий усилитель
5.7. Резонансный усилитель
5.8. Обратная связь в активном четырехполюснике
5.9. Применение отрицательной обратной связи для улучшения характеристик усилителя
5.10. Устойчивость линейных активных цепей с обратной связью. Алгебраический критерий устойчивости
5.11. Частотные критерии устойчивости

Глава 6. ПРОХОЖДЕНИЕ ДЕТЕРМИНИРОВАННЫХ КОЛЕБАНИЙ ЧЕРЕЗ ЛИНЕЙНЫЕ ЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ
6.1. Вводные замечания
6.2. Спектральный метод
6.3. Метод интеграла наложения
6.4. Прохождение дискретных сигналов через апериодический усилитель
6.5. Дифференцирование и интегрирование сигналов
6.6. Особенности анализа радиосигналов в избирательных цепях. Приближенный спектральный метод
6.7. Упрощение метода интеграла наложения (метод огибающей)
6.8. Прохождение радиоимпульса через резонансный усилитель
6.9. Линейные искажения колебания с непрерывной амплитудной модуляцией
6.10. Прохождение фазоманипулированного колебания через резонансную цепь
6.11. Прохождение частотно-манипулированного колебания через избирательную цепь
6.12. Прохождение частотно-модулированиого колебания через избирательные цепи

Глава 7. ПРОХОЖДЕНИЕ СЛУЧАЙНЫХ КОЛЕБАНИИ ЧЕРЕЗ ЛИНЕЙНЫЕ ЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ
7.1. Преобразование характеристик случайного процесса
7.2. Характеристики собственных шумов в радиоэлектронных цепях
7.3. Дифференцирование случайной функции
7.4. Интегрирование случайной функции
7.5. Нормализация случайных процессов в узкополосных линейных цепях
7.6. Распределение суммы гармонических колебаний со случайными фазами

Глава 8. НЕЛИНЕЙНЫЕ ЦЕПИ И МЕТОДЫ ИХ АНАЛИЗА
8.1. Нелинейные элементы
8.2. Аппроксимация нелинейных характеристик
8.3. Воздействие гармонических колебаний на цепи с безынерционными нелинейными элементами
8.4. Нелинейное резонансное усиление
8.5. Умножение частоты
8.6. Амплитудное ограничение
8.7. Нелинейная цепь с фильтрацией постоянного тока (выпрямление)
8.8. Амплитудное детектирование
8.9. Частотное и фазовое детектирование
8.10. Преобразование частоты сигнала
8.11. Синхронное детектирование
8.12. Получение амплитудно-модулированных колебаний

Глава 9. АВТОГЕНЕРАТОРЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ
9.1. Автоколебательная система
9.2. Возникновение колебания в автогенераторе
9.3. Стационарный режим автогенератора. Баланс фаз
9.4. Мягкий и жесткий режимы самовозбуждения
9.5. Примеры схем автогенераторов
9.6. Нелинейное уравнение автогенератора
9.7. Приближенное решение нелинейного уравнения автогенератора
9.8. Автогенераторы с внутренней обратной связью
9.9. Автогенератор с линией задержки в цепи обратной связи
9.10. Действие гармонической ЭДС на цепи с положительной обратной связью. Регенерация
9.11. Действие гармонической ЭДС на автогенератор. Захватывание частоты
9.12. Угловая модуляция в автогенераторе
9.13. ЯС-генераторы

Глава 10. ЦЕПИ С ПЕРЕМЕННЫМИ ПАРАМЕТРАМИ
10.1. Общие характеристики цепей с переменными параметрами
10.2. Прохождение колебаний через линейные цепи с переменными параметрами. Передаточная функция
10.3. Модуляция как параметрический процесс
10.4. Определение импульсной характеристики параметрической цепи
10.5. Энергетические соотношения в цепи с нелинейным реактивным элементом при гармонических колебаниях
10.6. Принцип параметрического усиления колебаний
10.7. Схема замещения емкости или индуктивности, изменяющихся по гармоническому закону
10.8. Одноконтурный параметрический усилитель
10.9. Двухчастотный параметрический усилитель
10.10. Преобразование частоты с помощью нелинейного реактивного элемента
10.11. Свободные колебания в контуре с периодически изменяющейся емкостью
10.12. Параметрические генераторы

Глава 11. ВОЗДЕЙСТВИЕ СЛУЧАЙНЫХ КОЛЕБАНИЙ НА НЕЛИНЕЙНЫЕ И ПАРАМЕТРИЧЕСКИЕ ЦЕПИ
11.1. Общие замечания
11.2. Преобразование нормального процесса в безынерционных нелинейных цепях
11.3. Преобразование энергетического спектра в безынерционном нелинейном элементе
11.4. Воздействие узкополосного шума на амплитудный детектор
11.5. Совместное воздействие гармонического колебания и нормального шума на амплитудный детектор
11.6. Совместное воздействие гармонического колебания и нормального шума на частотный детектор
11.7. Взаимодействие гармонического колебания и нормального шума в амплитудном ограничителе с резонансной нагрузкой
11.8. Корреляционная функция и энергетический спектр случайного процесса в параметрической цепи
11.9. Влияние мультипликативной помехи на закон распределения сигнала

Глава 12. СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ СИГНАЛА НА ФОНЕ ПОМЕХ
12.1. Вводные замечания
12.2. Согласованная фильтрация заданного сигнала
12.3. Импульсная характеристика согласованного фильтра. Физическая осуществимость
12.4. Сигнал и помеха на выходе согласованного фильтра
12.5. Примеры построения согласованных фильтров
12.6. Формирование сигнала, сопряженного о заданным фильтром
12.7. Согласованная фильтрация заданного сигнала при небелом шуме
12.8. Фильтрация сигнала с неизвестной начальной фазой
12.9. Согласованная фильтрация комплексного сигнала

Глава 13. ДИСКРЕТНАЯ ОБРАБОТКА СИГНАЛОВ. ЦИФРОВЫЕ ФИЛЬТРЫ
13.1. Вводные замечания
13.2. Алгоритм дискретной свертки (во временной области)
13.3. Дискретные преобразования Фурье
13.4. Погрешность дискретизации сигналов конечной длительности
13.5. Дискретные преобразования Лапласа
13.6. Передаточная функция дискретного фильтра
13.7. Передаточная функция рекурсивного фильтра
13.8. Применение метода г-преобразования для анализа дискретных сигналов и цепей
13.9. z-преобразование временных функций
13.10. z-преобразование передаточных функций дискретных цепей
13.11. Примеры анализа дискретных фильтров на основе метода z-преобразования
13.12. Преобразование аналог - цифра. Шумы квантования
13.13. Преобразование цифра - аналог и восстановление континуального сигнала
13.14. Быстродействие арифметического устройотва цифрового фильтра. Шумы округления

Глава 14. ПРЕДСТАВЛЕНИЕ КОЛЕБАНИЙ НЕКОТОРЫМИ СПЕЦИАЛЬНЫМИ ФУНКЦИЯМИ
14.1. Введение
14.2. Ортогональные полиномы и функции непрерывного типа
14.3. Примеры применения непрерывных функций
14.4. Определение функций Уолша
14.5. Примеры применения функций Уолша
14.6 Взаимный спектр базисных функций двух различных ортогональных систем
14.7. Дискретные функции Уолша

Глава 15. ЭЛЕМЕНТА СИНТЕЗА ЛИНЕЙНЫХ РАДИОЦЕПЕЙ
15.1. Вводные замечания
15.2. Некоторые свойства передаточной функции четырехполюсника
15.3. Связь между амплитудно-частотной и фазочастотной характеристиками четырехполюсника
15.4. Представление четырехполюсника общего вида каскадным соединением элементарных четырехполюсников
15.5. Реализация типового звена второго порядка
15.6. Реализация фазокорректирующей цепи
15.7. Особенности синтеза четырехполюсника по заданной амплитудно-частотной характеристике
15.8. Синтез фильтра нижних частот. Фильтр Баттерворга
15.9. Фильтр Чебышева (нижних частот)
15.10. Синтез различных фильтров на основе исходного фильтра нижних частот
15.11. Чувствительность характеристик цепи к изменениям параметров элементов
15.12. Имитация индуктивности е помощью активной ДО-цепи. Гиратор
15.13. Некоторые особенности синтеза цифровых фильтров

Приложение 1. Сигнал с минимальным произведением длительности на полосу частот
Приложение 2. Корреляционная функция сигнала на плоскости время - частота
Список литературы
Условные обозначения
Предметный указатель

ПРЕДИСЛОВИЕ К ТРЕТЬЕМУ ИЗДАНИЮ

Общая направленность учебника по курсу «Радиотехнические цепи и сигналы», положенная в основу первых двух изданий, сохранена и в настоящем издании. Однако книга коренным образом переработана в связи с необходимостью введения новых разделов, отображающих современное развитие техники радиоцепей и сигналов.

Широкое распространение дискретных и цифровых радиоэлектронных систем не позволяет более ограничивать курс РТЦиС рамками только аналоговых цепей и сигналов.

Развитие техники интегральных микросхем, основанное на широком применении методов синтеза цепей, не позволяет ограничивать курс РТЦиС изучением только методов анализа цепей.

Наконец, стремительное проникновение статистических методов во все отрасли радиотехники и электроники требует более обстоятельного изучения свойств случайных сигналов и преобразования их радиоцепях.

В свете этих требований и в соответствии с новой программой курса РТЦиС в учебник включены новые главы: «Основные характеристики случайных сигналов» (гл. 4), «Прохождение случайных колебаний через линейные цепи с постоянными параметрами» (гл. 7), «Дискретная обработка сигналов. Цифровые фильтры» (гл. 13), «Представление колебаний некоторыми специальными функциями», включая функций Уолша (гл. 14), «Элементы синтеза линейных радиоцепей» (гл. 15). Заново написана гл. 5, посвященная теории линейных активных цепей с обратной связью.

Все остальные главы предыдущего издания подверглись методической переработке с учетом опыта преподавания курса РТЦиС и многочисленных замечаний, сделанных преподавателями радиотехнических специальностей вузов, а также многими радиоспециалистами.

Общепризнано, что наряду g усвоением необходимых знаний первостепенное значение имеет развитие у студентов навыков к самостоятельной творческой работе. В соответствии с решениями XXV съезда КПСС о развитии научно-исследовательской работы в высших учебных заведениях все шире практикуется приобщение студентов к научной работе. Поэтому автор стремился сочетать изложение основных сведений, рассчитанных на первоначальное изучение и обязательных для всех студентов радиотехнической специальности, с изложением некоторых дополнительных, более сложных материалов, рассчитанных на студентов с повышенной подготовкой. Такие разделы выделены петитом. Незначительные сокращения, которые могут потребоваться в зависимости от уровня общетеоретической подготовки студентов, нетрудно осуществить без нарушения последовательности и целостности изучения настоящего курса.

Автор выражает искреннюю благодарность преподавателям кафедры ОРТ Московского энергетического института проф. Федорову Н. Н., доцентам Баскакову С. И., Белоусовой И. В., ассистенту Богаткину В. И., доценту Жукову В. П., старшему преподавателю Ивановой Н. Н., доцентам Карташеву В. Г., Николаеву А. М., Поллаку Б. П., старшему преподавателю Штыкову В. В. за высококвалифицированное и подробное рецензирование рукописи этой книги. Большое число критических замечаний и ценных советов помогло существенно улучшить изложение всех глав учебника.

Неоценимую помощь в работе над рукописью оказали преподаватели, сотрудники и аспиранты кафедры радиотехники МАИ. Всем им автор выражает глубокую благодарность.

Скачать Гоноровский И. С. Радиотехнические цепи и сигналы . Учебник для вузов. Издание третье переработанное и дополненное. Москва, Издательство «Советское радио», 1977

Основные радиотехнические процессы


  1. Преобразование исходного сообщения в электрический сигнал.

  2. Генерация высокочастотных колебаний.

  3. Управление колебаниями (модуляция).

  4. Усиление слабых сигналов в приемнике.

  5. Выделение сообщения из высокочастотного колебания (детектирование и декодирование).

Радиотехнические цепи и методы

их анализа

Классификация цепей

И элементы, используемые для осуществления перечисленных преобразований сигналов и колебаний, можно разбить на следующие основные классы:

Линейные цепи с постоянными параметрами;

Линейные цепи с переменными параметрами;

Нелинейные цепи.
^ Линейные цепи с постоянными параметрами

Можно исходить из следующих определений:


  1. Цепь является линейной, если входящие в нее элементы не зависят от внешней силы (напряжения, тока), действующей на цепь.

  2. Линейная цепь подчиняется принципу суперпозиции (наложения).
,

Где L - оператор, характеризующий воздействие цепи на входной сигнал.

При действии на линейную цепь нескольких внешних сил поведение цепи (ток, напряжение) можно определить путем наложения (суперпозиции) решений, найденных для каждой из сил в отдельности.

Иначе: в линейной цепи сумма эффектов от отдельных воздействий совпадает с эффектом от суммы воздействий.


  1. При любом сколь угодно сложном воздействии в линейной цепи с постоянными параметрами не возникает колебаний новых частот.

^ Линейные цепи с переменными параметрами

Имеются в виду цепи, один или несколько параметров которых изменяются во времени (но не зависят от входного сигнала). Подобные цепи часто называются линейными параметрическими .

Свойства 1 и 2 из предыдущего пункта справедливы и для этих цепей. Однако даже простейшее гармоническое воздействие создает в линейной цепи с переменными параметрами сложное колебание, имеющее спектр частот.
^ Нелинейные цепи

Радиотехническая цепь является нелинейной, если в ее состав входят один или несколько элементов, параметры которых зависят от уровня входного сигнала. Простейший нелинейный элемент - диод.

Основные свойства нелинейных цепей:


  1. К нелинейным цепям (и элементам) принцип суперпозиции неприменим .

  2. Важным свойством нелинейной цепи является преобразование спектра сигнала.

^ Классификация сигналов

С информационной точки зрения сигналы можно разделить на детерминированные и случайные.

Детерминированным называют любой сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью единица.

К случайным относят сигналы, мгновенные значения которых заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы.

Наряду с полезными случайными сигналами в теории и практике приходится иметь дело со случайными помехами - шумами. Полезные случайные сигналы, а также помехи часто объединяют термином случайные колебания или случайные процессы .

Сигналы в канале радиосвязи часто подразделяют на управляющие сигналы и на радиосигналы ; под первыми понимают модулирующие, а под вторыми - модулированные колебания.

Применяемые в современной радиоэлектронике сигналы можно разделить на следующие классы:

Произвольные по величине и непрерывные по времени (аналоговые);

Произвольные по величине и дискретные по времени (дискретные);

Квантованные по величине и непрерывные по времени (квантованные);

Квантованные по величине и дискретные по времени (цифровые).
^ Характеристики детерминированных

сигналов

Энергетические характеристики

Основными энергетическими характеристиками вещественного сигнала s(t) являются его мощность и энергия.

Мгновенная мощность определяется как квадрат мгновенного значения s(t):

Энергия сигнала на интервале t 2 , t 1 определяется как интеграл от мгновенной мощности:

.

Отношение

Имеет смысл средней на интервале t 2 , t 1 мощности сигнала.
^ Представление произвольного сигнала

в виде суммы элементарных колебаний

Для теории сигналов и их обработки важное значение имеет разложение заданной функции f(x) по различным ортогональным системам функций j n (x). Любой сигнал может быть представлен в виде обобщенного ряда Фурье:

,

Где С i - весовые коэффициенты,

J i - ортогональные функции разложения (базисные функции).

Для базисный функций должно выполняться условие:

Если сигнал определен на интервале от t 1 до t 2 , то

Норма базисной функции.

Если функция не ортонормированная, то ее можно таким образом привести. С увеличением n уменьшается C n .

Предположим, что задано множество базисных функций {j n }. При задании множества базисных функций и при фиксированном количестве слагаемых в обобщенном ряде Фурье, ряд Фурье дает аппроксимацию исходной функции, имеющую минимальную среднеквадратичную ошибку в определении исходной функции. Обобщенный ряд Фурье дает

Такой ряд дает минимум в среднем ошибки (погрешности).

Имеется 2 задачи разложения сигнала на простейшие функции:


  1. ^ Точное разложение на простейшие ортогональные функции (аналитическая модель сигнала, анализ поведения сигнала).
Эта задача реализуется на тригонометрических базисных функциях, так как они имеют простейшую форму и являются единственными функциями, сохраняющими свою форму при прохождении через линейные цепи; при использовании этих функций можно применять символический метод ().

  1. ^ Аппроксимация сигналов процессов и характеристик , когда требуется свести к минимуму число членов обобщенного ряда. К ним относятся: полиномы Чебышева, Эрмита, Лежандра.

^ Гармонический анализ периодических сигналов

При разложении периодического сигнала s(t) в ряд Фурье по тригонометрическим функциям в качестве ортогональной системы берут

Интервал ортогональности определяется нормой функции

Среднее значение функции за период.

- основная формула для

определения ряда Фурье

Модуль - четная функция, фаза - нечетная функция.

Рассмотрим пару для к-го члена

- разложение ряда Фурье


^ Примеры спектров периодических сигналов


  1. Прямоугольное колебание . Подобное колебание, часто называемое меандром (Меандр - греческое слово, обозначающее “орнамент”), находит особенно широкое применение в измерительной технике.
^ Гармонический анализ непериодических сигналов



Пусть сигнал s(t) задан в виде некоторой функции, отличной от нуля в промежутке (t 1 ,t 2). Этот сигнал должен быть интегрируем.

Возьмем бесконечный отрезок времени Т, включающий в себя промежуток (t 1 ,t 2). Тогда . Спектр непериодического сигнала является сплошным. Заданный сигнал можно представить в виде ряда Фурье , где

На основании этого получим:

Поскольку Т®µ, то сумму можно заменить интегрированием, а W 1 на dW и nW 1 на W. Таким образом мы прейдем к двойному интегралу Фурье

,





где - спектральная плотность сигнала. Когда интервал (t 1 ,t 2) не уточнен интеграл имеет бесконечные пределы. Это есть обратное и прямое преобразование Фурье, соответственно.

Если сравнить выражения для огибающей сплошного спектра (модуль спектральной плотности) непериодического сигнала и огибающей линейчатого спектра периодического сигнала, то будет видно, что они совпадают по форме, но отличаются масштабом .

Следовательно, спектральная плотность S(W) обладает всеми основными свойствами комплексного ряда Фурье. Т. е. можно записать , где

, а .

Модуль спектральной плотности является нечетной функцией и его можно рассматривать как амплитудно-частотную характеристику. Аргумент - нечетная функция рассматриваемая как фазо-частотная характеристика.

На основании этого сигнал можно выразить следующим образом

Из четности модуля и нечетности фазы следует, что подынтегральная функция в первом случая является четной, а во втором - нечетной относительно W. следовательно второй интеграл равен нулю (нечетная функция в четных пределах) и окончательно .

Отметим, что при W=0 выражение для спектральной плотности равно площади под кривой s(t)

.
^ Свойства преобразования Фурье

Сдвиг сигнала во времени

Пусть сигнал s 1 (t) произвольной формы обладает спектральной плотностью S 1 (W). При задержке этого сигнала на время t 0 получим новую функцию времени s 2 (t)=s 1 (t-t 0). Спектральная плотность сигнала s 2 (t) будет следующая . Введем новую переменную . Отсюда .

Любому сигналу соответствует своя спектральная плотность. Сдвиг сигнала по оси времени приводит к изменению его фазы, а модуль этого сигнала не зависит от положения сигнала на оси времени.

^ Изменение масштаба времени



Пусть сигнал s 1 (t) подвергается сжатию во времени. Новый сигнал s 2 (t) связан с исходным соотношением .

Длительность импульса s 2 (t) в n раз меньше, чем исходного. Спектральная плотность сжатого импульса . Введем новую переменную . Получим .

При сжатии сигнала в n раз во столько же раз расширяется его спектр. Модуль спектральной плотности при этом уменьшатся в n раз. При растяжении сигнала во времени имеют место сужение спектра и увеличение модуля спектральной плотности.

^ Смещение спектра колебаний

Домножим сигнал s(t) на гармонический сигнал cos(w 0 t+q 0). Спектр такого сигнала

Разобьем его на 2 интеграла .

Полученное соотношение можно записать в следующей форме

Таким образом умножение функции s(t) на гармоническое колебание приводит к расщеплению спектра на 2 части, смещенные на ±w 0 .

^ Дифференцирование и интегрирование сигнала

Пусть дан сигнал s 1 (t) со спектральной плотностью S 1 (W). Дифференцирование этого сигнала дает соотношение . Интегрирование же приводит к выражению .

^ Сложение сигналов

При сложении сигналов s 1 (t) и s 2 (t) обладающих спектрами S 1 (W) и S 2 (W) суммарному сигналу s 1 (t)+s 2 (t) соответствует спектр S 1 (W)+S 2 (W) (т. к. преобразование Фурье является линейной операцией).

^ Произведение двух сигналов

Пусть . Такому сигналу соответствует спектр

Представим функции в виде интегралов Фурье .

Подставляя второй интеграл в выражение для S(W) получим

Следовательно .

Т. е. спектр произведения двух функций времени равен свертке их спектров (с коэффициентом 1/2p).

Если , то спектр сигнала будет .

^ Взаимная обратимость частоты и времени

в преобразовании Фурье


  1. Пусть s(t) - четная функция относительно времени.
Тогда . Так как второй интеграл от нечетной функции в симметричных пределах равен нулю. Т. е. функция S(W) является вещественной и четной относительно W.

Если предположить, что s(t) - четная функция. Запишем s(t) в виде . Произведем замену W на t и t на W, получим .

Если спектр имеет форму какого сигнала, то тогда сигнал соответствующий этому спектру повторяет форму спектра подобного сигнала.
^ Распределение энергии в спектре непериодического сигнала

Рассмотрим выражение , в котором f(t)=g(t)=s(t). В этом случае данный интеграл равен . Это соотношение носит название равенства Парсеваля.

Энергетический расчет полосы пропускания: , где , а .
^ Примеры спектров непериодических сигналов

Прямоугольный импульс



Определяется выражением

Найдем спектральную плотность



.
При удлинении (растягивании) импульса расстояние между нулями сокращается, значение S(0) при этом увеличивается. Модуль функции можно рассматривать как АЧХ, а аргумент как ФЧХ спектра прямоугольного импульса. Каждая перемена знака учитывает приращение фазы на p.

При отсчете времени не от середины импульса, а от фронта ФЧХ спектра импульса должна быть дополнена слагаемым , учитывающим сдвиг импульса на время (результирующая ФЧХ показана пунктиром).

Колоколообразный (гауссовский) импульс

Определяется выражением . Постоянная а имеет смысл половины длительности импульса, определяемой на уровне е -1/2 от амплитуды импульса. Таким образом, полная длительность импульса .

Спектральная плотность сигнала.



Для удобства дополним показатель степени до квадрата суммы , где величина d определяется из условия , откуда . Таким образом, выражение для спектральной плотности можно привести к виду .

Переходя к новой переменной получим . Учитывая, что входящий в это выражение интеграл равен , окончательно получим , где .

Ширина спектра импульса

Гауссовский импульс и его спектр выражаются одинаковыми функциями и обладают свойством симметрии. Для него соотношение длительности импульса и полосы пропускания является оптимальным, т. е. при данной длительности импульса гауссовский импульс имеет минимальную полосу пропускания.

дельта-импульс (единичный импульс)



Сигнал задан соотношением . Ее можно получить из вышеперечисленных импульсов путем устремления t и к нулю.

Известно, что , следовательно спектр такого сигнала будет постоянным (это есть площадь импульса, равная единице).

Для создания такого импульса необходимы все гармоники.

Экспоненциальный импульс



Сигнал вида , c>0.

Спектр сигнала находится следующим образом

Запишем сигнал в другой форме .

Если , то . Это означает, что мы получим единичный скачек. При получаем следующее выражение для спектра сигнала .




Отсюда модуль


Радиосигналы
Модуляция

Пусть дан сигнал , в нем A(t) является амплитудной модуляцией, w(t) - частотная модуляция, j(t) - фазовая модуляция. Две последние образуют угловую модуляцию. Частота w должна быть велика по сравнению с наивысшей частотой спектра сигнала W (ширины спектра занимаемой сообщением).

Модулированное колебание имеет спектр, структура которого зависит как от спектра передаваемого сообщения, так и от вида модуляции.

Возможно существование нескольких видов модуляции: непрерывная, импульсная, кодоимпульсная.
^ Амплитудная модуляция



Общее выражение для амплитудно-модулированного колебания выглядит следующим образом

Характер огибающей A(t) определяется видом передаваемого сообщения.

Если сигнал сообщения , то огибающую модулированного колебания можно представить в виде . Где W - частота модуляции, g - начальная фаза огибающей, k - коэффициент пропорциональности, DА m - абсолютное изменение амплитуды. Отношение - коэффициент модуляции. Исходя из этого можно записать . Тогда амплитудно-модулированное колебание запишется в следующем виде .

При неискаженной модуляции (М£1) амплитуда колебания изменяется в пределах от до .

Максимальному значению соответствует пиковая мощность . Средняя же за период модуляции мощность .

Мощность для передачи амплитудно-модулированного сигнала больше чем для передачи простого сигнала.

Спектр амплитудно-модулированного сигнала

Пусть модулированное колебание определяется выражением

Преобразуем это выражение



Первое слагаемое - исходное немодулированное колебание. Второе и третье - колебания появляющиеся в процессе модуляции Частоты этих колебаний (w 0 ±W) называются боковыми частотами модуляции. Ширина спектра 2W.

В случая когда сигнал есть сумма , где , а . Причем , где .

Отсюда получим





Каждая из составляющих спектра модулирующего сигнала независимо друг от друга образуют две боковых частоты (левую и правую). Ширина спектра в этом случае 2W 2 =2W max 2 максимальных частоты модулирующего сигнала.

На векторной диаграмме ось времени вращается по часовой стрелке с угловой частотой w 0 (отсчет ведется от горизонтальной оси) . Амплитуды и фазы боковых лепестков всегда равны между собой, поэтому результирующий их вектор DF будет всегда направлен по линии OD. Итоговый вектор OFизменяется только по амплитуде не меняя своего углового положения.

Пусть имеется сигнал Запишем в другом виде .

Сигналу соответствует спектр , где , а S A - спектральная плотность огибающей. Отсюда следует окончательное выражение для спектра

Это объясняется стробирующим действием d-функции, т. е. все составляющие равны нулю кроме частот w±w н (это те значения при которых d-функция равна нулю). Даже если спектр не дискретный, то все равно имеются боковые составляющие.
^ Частотная модуляция

Пусть есть колебание с частотной модуляцией . Однако частота - это производная от фазы. Если изменить фазу, то текущая частота тоже изменится.

Частотная модуляция

,

Где представляет собой амплитуду частотного отклонения. Для краткости в дальнейшем будем называть девиацией частоты или просто девиацией .

Где w 0 t - текущее изменение фазы; - индекс угловой модуляции.

Предположим , где .

,

Где m - коэффициент модуляции.

Таким образом, гармоническая модуляция фазы с индексом эквивалентна частотной модуляции с девиацией .

При гармоническом модулирующем сигнале различие между ЧМ и ФМ можно выявить, только изменяя частоту модуляции.

При ЧМ девиация W .

При ФМ величина пропорциональна амплитуде модулирующего напряжения и не зависит от частоты модуляции W .

Для монохроматического модулирующего сигнала фазовая и частотная модуляции неразличимы.
^ Спектр сигнала при угловой модуляции

Пусть задано колебание

Имеются два амплитудно-модулированных сигнала. Такие составляющие, которые отличаются на называются квадратурными составляющими.

Пусть . Это совпадает с . Здесь q 0 =0, g=0.

Cos и sin - функции периодические и разлагаются в ряд Фурье

J(m) - Бесселева функция 1 рода.

Спектр при угловой модуляции бесконечно большой, в отличие от спектра при амплитудной модуляции.

При угловой модуляции спектр частотно-модулированного колебания даже при модуляции 1 частотой состоит из бесчисленного количества гармоник, группирующихся около несущей частоты.

Недостатки: спектр очень широкий.

Достоинства: наиболее помехоустойчивая.

Рассмотрим случай, когда m << 1.

Если m очень мал, то в спектре присутствуют только 2 боковые частоты.



Ширина спектра (m << 1) будет равна 2W.

Если m=0,5¸1, то появляется вторая пара боковых частот w±2W. Ширина спектра равна 4W.

Если m=1¸2, то появляются третья и четвертая гармоники w±3W, w±4W.

Ширина спектра при m очень больших

ШС=2mW=2w д

Если коэффициент модуляции значительно меньше единицы, то такая модуляция называется быстрой , тогда w д << W.

Если m >> 1, то это медленная модуляция, тогда w д >> W.
^ Спектр радиоимпульса с частотно-модулированным

заполнением



, где

Где ,

Основной параметр линейно-частоно модулированного сигнала (ЛЧМ) или база сигнала ЛЧМ.

B может быть и положительной и отрицательной.

Предположим, что b>0

Спектр сигнала представляет собой 2 компоненты:

1 - всплеск около частоты w о;

2 - всплеск около частоты -w о.

При определении спектральной плотности в области положительных частот второе слагаемое можно отбросить.

Дополним экспоненту до полного квадрата

, где С(х) и S(х) - интегралы Френеля

Модуль спектральной плотности ЛЧМ сигнала

Фаза спектральной плотности ЛЧМ сигнала



Чем больше m, тем ближе форма спектра к прямоугольной с шириной спектра . Зависимость фазы является квадратичной.

При m стремящемся к большим значениям форма АЧХ стремится к прямоугольной, а фаза состоит из двух частей:

1). дает параболу

2). стремится к

При большом m и :

Тогда значение модуля: .
Смешанная амплитудно-частотная модуляция

Спектральная плотность косинусного квадратурного колебания при =0 будет

При определении спектра синусного квадратурного колебания фазовый угол следует приравнять -90°. Следовательно,

Таким образом, окончательно спектральная плотность колебания определяется выражением

Переходя к переменной , получаем

.

Структура спектра сигнала при смешанной амплитудно-частотной модуляции зависит от соотношения и вида функций А(t) и q(t).

При частотной модуляции фазы нечетных гармоник изменяются на 180°. Одновременная модуляция и по частоте, и по амплитуде при некоторых соотношениях А(t) и q(t) приводит к нарушению симметричности спектра на только по фазе, но и по амплитуде.

Если q(t) является нечетной функцией от t, то при любых А(t) спектр выходного сигнала является несимметричным.

Пусть А(t) - четная функция, тогда А с (t) - четная, А s (t) - нечетная, является чисто вещественным, симметричным относительно W, четным, а - чисто мнимым, несимметричным относительно W и нечетным.

С учетом множителя j спектр выходного колебания является вещественным.. В результате спектр получился несимметричным, но по отношению к w=0 он является симметричным. Такой же результат можно получить и при нечетной функции А(t). В этом случае спектр является чисто мнимым и нечетным.

Для симметричности выходного спектра требуется четность q(t) при условии, что А(t) было либо четным, либо нечетным относительно t. Если А(t) является суммой четных и нечетных функций, то выходной спектр несимметричен при любых условиях.

Фаза у ЛЧМ четная и амплитуда четная.

Причем

Выходной спектр получился симметричным.


  1. А(t) = четная функция + нечетная функция, а q(t) - четная функция.
Предположим, что , где .

Спектр получился несимметричным.
Узкополосный сигнал

Под ним понимается любой сигнал, у которого полоса частот, занимаемая сигналом значительно меньше несущей частоты: .

Где А s (t) - синфазная амплитуда, В s (t) - квадратурная амплитуда.

Комплексная амплитуда узкополосного сигнала .

,

Где - оператор вращения.

Простейшее колебание можно представить в форме , где . В этом выражении огибающая А(t) в отличие от А о является функцией времени, которую можно определить из условия сохранения заданной функции а(t)

Из этого выражения видно, что новая функция А(t) по существу не является “огибающей” в общепринятом смысле, так как она может пересекать кривую а(t) (вместо касания в точках, где А(t) имеет максимальное значение). То есть мы не верно определили огибающую и частоту. Существует метод мгновенной частоты - метод Гильберта для определения частоты.

Если сигнал , то тогда

Полная фаза сигнала , а мгновенная частота

Физическая огибающая .

Предположим, что выбрали опорную частоту не w о, а w о +Dw, тогда

, где .

Первое

Модуль комплексной огибающей равен физической огибающей и постоянен, не зависит от выбора частоты.

Второе свойство комплексной огибающей:

Модуль сигнала s(t) всегда меньше или равен u s (t). Равенство наступает тогда, когда cos w o t = 1. В эти моменты производная сигнала и производная огибающей равны.

Физическая огибающая совпадает с максимальным значением амплитуды сигнала.



Зная комплексную огибающую можно найти ее спектр, а через него сам сигнал.

,

.

Зная G(w) найдем U s (t).

Помножим на (-b-jt) и получим вещественную и мнимую части соответственно , . Отсюда амплитуда будет .
^ Аналитический сигнал

Пусть есть сигнал s(t) определяемый как . Разделим его на две составляющие .

В том выражении –– аналитический сигнал. Если ввести переменную то . То есть мы получили . Реальный сигнал есть , сигнал сопряженный по Гильберту . Аналитический сигнал есть .

, –– прямое и обратное преобразование Гильберта.
Определение несущей и огибающей по методу Гильберта

Амплитуда сигнала , его фаза . Значение мгновенной частоты .

Пример: . .

–– точное определение огибающей. Использование метода Гильберта позволяет давать однозначные и абсолютно достоверные значения огибающей и мгновенной частоты сигнала.

–– любой сигнал можно разложить в ряд Фурье.

–– сопряженный по Гильберту сигнал.

Если сигнал представлен не рядом Фурье, а интегралом Фурье, то справедливы следующие соотношения , .
^ Свойства аналитического сигнала


  1. Произведение аналитического сигнала z s (t) на сопряженный ему сигнал z s * (t) равно квадрату огибающей исходного (физического) сигнала s(t).


Иначе , где .
Преобразование Гильберта для узкополосного процесса

Пусть , тогда сопряженный по Гильберту сигнал .

Исходя из этого получим

Свойства преобразований Гильберта

––преобразование Гильберта, где Н() – оператор преобразования.



Пример . Сигнал s(t) – идеальный низкочастотный сигнал.

Частотные и временные характеристики

радиотехнических цепей



Пусть имеется линейный активный четырехполюсник.

1. Передаточная функция . Характеризует изменение сигнала на выходе относительно сигнала на входе. Модуль называют амплитудно-частотной характеристикой или просто частотной характеристикой. Аргумент –– фазо-частотная характеристика или просто фазовая.

2. Импульсная характеристика –– реакция цепи на единичный импульс. Характеризует изменение сигнала во времени. Связь с передаточной функцией осуществляется через обратное и прямое преобразование Фурье (соответственно) . Или же через преобразование Лапласа .

3. Переходная функция –– реакция цепи на единичный скачек. Это есть накопление сигнала за время t.
^ Апериодический усилитель



Схема замещения простейшего апериодического усилителя. Усилительный прибор представлен в виде источника тока SE 1 с внутренней проводимостью G i =1/R i . Емкость С включает в себя межэлектродную емкость активного элемента и емкость внешней цепи, шунтирующей нагрузочный резистор R н.
Передаточная функция такого усилителя

,



где S –– крутизна активного элемента, Е 1 – напряжение на входе.

Максимальный коэффициент усиления (при ) . Отсюда , где – время задержки.

Модуль передаточной характеристики –– АЧХ. Т. е. этот усилитель пропускает сигнал только в определенной полосе частот. ФЧХ –– .

Лекция №2 Радиотехнические сигналы

Теория сигналов. Классификация. Основные характеристики сигналов

Изменение во времени напряжения, тока, заряда или мощности в электрических цепях называют электрическим колебанием. Используемое для передачи информации электрическое колебание является сигналом. Сложность процессов в электрических цепях зависит от сложности исходных сигналов. Поэтому целесообразно пользоваться спектром сигналов. Из математики известны ряды и преобразования Фурье, с помощью которых удается представить сигналы совокупностью гармонических составляющих. На практике полезен анализ характеристики, дающий представление о скорости изменения и длительности сигнала. Это удается достичь с помощью корреляционного анализа.

2.1. Общие сведения о радиотехнических сигналах

Традиционно радиотехническими принято считать электрические (а теперь и оптические) сигналы, относящиеся к радиодиапазону. С математической точки зрения всякий радиотехнический сигнал можно представить некоторой

функцией времени u(t), которая характеризует изменение его мгновенных значений напряжения (такое представление применяют чаще всего), тока, заряда или мощности. Каждый класс сигналов имеет свои особенности и требует специфических методов описания и анализа. Одним из ключевых компонентов представления и обработки сигналов является анализ. Основной целью анализа служит сравнение сигналов друг с другом для выявления их сходства и различия. Различают три основные составляющие анализа электрических сигналов:

Измерение числовых параметров сигналов (энергию, среднюю мощность и среднее квадратическое значение);

Разложение сигнала на элементарные составляющие либо для их рассмотрения по отдельности, либо для сравнения свойств различных сигналов; такое разложение проводят с использованием рядов и интегральных преобразований, важнейшими из которых являются ряды и преобразование Фурье;

Количественное измерение степени «похожести» различных сигналов, их параметров и характеристик; такое измерение производят с применением аппарата корреляционного анализа.

Для того чтобы сделать сигналы объектами изучения и расчетов, следует указать способ их математического описания, т. е. создать математическую модель исследуемого сигнала. В радиотехнике каждому классу сигналов соответствует свое математическое представление, своя математическая модель, причем одна и та же математическая модель может практически всегда адекватно описывать напряжение, ток, заряд, мощность, напряженность электромагнитного поля и т. д. Наиболее распространенными способами представлений (описаний) сигналов являются временной, спектральный, аналитический, статистический, векторный, графический и геометрический. Функции, описывающие сигналы, могут принимать как вещественные, так и комплексные значения. Поэтому в дальнейшем в книге часто будем говорить о вещественных и комплексных сигналах. Часть краткой классификации сигналов по ряду признаков приведена на рис.2.1.

Рис.2.1. Классификация радиотехнических сигналов

Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы обычно описывается одной (одномерный сигнал; п = 1), двумя (двумерный сигнал; п = 2) или более (многомерный сигнал п > 2) независимыми переменными. Одномерные сигналы являются функциями только времени, а многомерные, кроме того, отражают положение в «-мерном пространстве. Будем для определенности и упрощения в основном рассматривать одномерные сигналы, зависящие от времени, многомерный случай, когда сигнал представляется в виде конечной или бесконечной совокупности точек, например в пространстве, положение которых зависит от времени. В телевизионных системах сигнал черно-белого изображения можно рассматривать как функцию f(x,у,f) двух пространственных координат и времени, представляющую интенсивность излучения в точке (х, у) в момент времени t на катоде. При передаче цветного телевизионного сигнала имеем три функции f (x, у, t), g(x, у, t), h(x, у, t), определенные на трехмерном множестве (можно рассматривать эти три функции также как компоненты трехмерного векторного поля). Кроме того, различные виды телевизионных сигналов могут возникать при передаче телевизионного изображения совместно со звуком. Многомерный сигнал — упорядоченная совокупность одномерных сигналов. Многомерный сигнал создает, например, система напряжений на зажимах многополюсника (рис. 2.2).

Рис. 2.2. Система напряжений многополюсника.

Многомерные сигналы описывают сложными функциями, и их обработка чаще возможна в цифровой форме. Поэтому многомерные модели сигналов особенно полезны в случаях, когда функционирование сложных систем анализируется с помощью компьютеров. Итак, многомерные, или векторные, сигналы состоят из множества одномерных сигналов

где n — целое число, размерность сигнала. По особенностям структуры временного представления (рис. 2.3) все радиотехнические сигналы делятся на аналоговые (analog ), дискретные (discrete - time ; от лат. discretus — разделенный, прерывистый) и цифровые (digital ). Если физический процесс, порождающий одномерный сигнал, можно представить непрерывной функцией времени u(t) (рис. 2.3, а), то такой сигнал называют аналоговым (непрерывным). Примером аналогового сигнала является некоторое напряжение, которое подано на вход осциллографа, в результате чего на экране возникает непрерывная кривая как функция времени. Дискретный сигнал получают из аналогового путем специального преобразования. Процесс преобразования аналогового сигнала в последовательность отсчетов называется дискретизацией (sampling), а результат такого преобразования — дискретным сигналом или дискретным рядом (discrete series). Простейшая математическая модель дискретного сигнала U n (t) — последовательность точек на временной оси, взятых, как правило, через равные промежутки времени Т = ∆t, называемые периодом дискретизации (или интервалом, шагом дискретизации; sample time), и в каждой из которых заданы значения соответствующего непрерывного сигнала (рис. 2.3, б). Величина, обратная периоду дискретизации, называется частотой дискретизации (sampling frequency): f Д = 1/Т (другое обозначение f Д f Д = 1/∆t). Соответствующая ей угловая (круговая) частота определяется следующим образом: ω Д = 2π /∆t.

Рис. 2.3. Радиотехнические сигналы: а — аналоговый; б — дискретный; в — квантованный; г — цифровой

Разновидностью дискретных сигналов является цифровой сигнал (digital signal ), В процессе преобразования дискретных отсчетов сигнала в цифровую форму (обычно в двоичные числа) производится его квантование по уровню (quantization ) напряжения ∆. При этом значения уровней сигнала можно пронумеровать двоичными числами с конечным, требуемым числом разрядов. Сигнал, дискретный во времени и квантованный по уровню, называют цифровым сигналом. В цифровом сигнале дискретные значения сигнала u T (t) вначале квантуют по уровню (рис. 2.3, в) и затем квантованные отсчеты дискретного сигнала заменяют числами u Ц (t), чаще всего реализованными в двоичном коде, который представляют высоким (единица) и низким (нуль) уровнями потенциалов напряжения — короткими импульсами длительностью τ (рис. 2.3, г). Такой код называют униполярным. При представлении сигнала неизбежно происходит его округление. Возникающие при этом ошибки округления называются ошибками (или шумами) квантования (quantization error , quantization noise ). Последовательность чисел, представляющая сигнал при цифровой обработке, является дискретным рядом (discrete series). Одним из основных признаков, по которым различаются сигналы, является предсказуемость сигнала (его значений) во времени. Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны. Простейшими примерами детерминированного сигнала являются гармоническое колебание с известной начальной фазой, высокочастотные колебания, модулированные по известному закону. Детерминированный сигнал не может быть носителем информации. Детерминированные сигналы разделяют на периодические и непериодические (импульсные). Сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую он предназначен, называют импульсным сигналом.

Случайными называют сигналы, мгновенные значения которых в любой момент времени не известны и не могут быть предсказаны с вероятностью, равной единице. Сигналом, несущим полезную информацию, может быть только случайный сигнал.

Случайные процессы, параметры и свойства которых можно определять по одной случайной реализации (выборке) называются эргодическими, они обладают определенными свойствами.

Часто при описании и анализе некоторых видов сигналов (в первую очередь узкополосных) бывает удобной комплексная форма их представления

где - соответственно модуль и фаза комплексной величины

Комплексная функция u(t) может быть также представлена в виде

где Re, Im — действительная и мнимая части комплексной функции. Из обоих формул получим:

При векторном представлении комплексный сигнал — это вектор на комплексной плоскости с действительной осью — осью абсцисс и мнимой осью — осью ординат (рис. 2.5). Вектор на плоскости вращается в положительном направлении (против часовой стрелки) со скоростью ω 0 . Длина вектора равна модулю комплексного сигнала, угол между вектором и осью абсцисс — аргументу φ 0 . Проекции вектора на оси координат равны соответственно действительной и мнимой частям комплексной величины.

Прежде чем приступить к изучению каких-либо новых явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большим признакам. Для рассмотрения и анализа сигналов выделим их основные классы. Это необходимо по двум причинам. Во-первых, проверка принадлежности сигнала к конкретному классу - процедура анализа. Во-вторых, для представления и анализа сигналов разных классов зачастую приходится использовать разные средства и подходы. Основные понятия, термины и определения в области радиотехнических сигналов устанавливает национальный (ранее, государственный) стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы чрезвычайно разнообразны. Часть краткой классификации сигналов по ряду признаков приведена на рис. 1. Более подробно сведения о ряде понятий изложены далее. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы обычно описывается одной (одномерный сигнал; n = 1), двумя

(двумерный сигнал; n = 2) или более (многомерный сигнал n > 2) независимыми переменными. Одномерные сигналы являются функциями только времени, а многомерные, кроме того, отражают положение в n-мерном пространстве .

Рис.1. Классификация радиотехнических сигналов

Будем для определенности и упрощения в основном рассматривать одномерные сигналы, зависящие от времени, однако материал учебного пособия допускает обобщение и на многомерный случай, когда сигнал представляется в виде конечной или бесконечной совокупности точек, например в пространстве, положение которых зависит от времени. В телевизионных системах сигнал черно-белого изображения можно рассматривать как функцию f(x, у, f) двух пространственных координат и времени, представляющую интенсивность излучения в точке (х, у) в момент времени t на катоде. При передаче цветного телевизионного сигнала имеем три функции f(x, у, t), g(x, у, t), h(x, у, t), определенные на трехмерном множестве (можно рассматривать эти три функции также как компоненты трехмерного векторного поля). Кроме того, различные виды телевизионных сигналов могут возникать при передаче телевизионного изображения совместно со звуком.

Многомерный сигнал - упорядоченная совокупность одномерных сигналов. Многомерный сигнал создает, например, система напряжений на зажимах многополюсника (рис. 2). Многомерные сигналы описывают сложными функциями, и их обработка чаще возможна в цифровой форме. Поэтому многомерные модели сигналов особенно полезны в случаях, когда функционирование сложных систем анализируется с помощью компьютеров. Итак, многомерные, или векторные, сигналы состоят из множества одномерных сигналов

где n - целое число, размерность сигнала.

Р
ис. 2. Система напряжений многополюсника

По особенностям структуры временного представления (рис. 3) все радиотехнические сигналы делятся на аналоговые (analog), дискретные (discrete-time; от лат. discretus - разделенный, прерывистый) и цифровые (digital).

Если физический процесс, порождающий одномерный сигнал, можно представить непрерывной функцией времени u(t) (рис. 3, а), то такой сигнал называют аналоговым (непрерывным), или, более обобщенно, континуальным (continuos - многоступенчатым), если последний имеет скачки, разрывы по оси амплитуд. Заметим, что традиционно термин «аналоговый» используют для описания сигналов, которые непрерывны во времени. Непрерывный сигнал можно трактовать как действительное или комплексное колебание во времени u(t), являющейся функцией непрерывной действительной временной переменной. Понятие «аналоговый» сигнал связано с тем, что его любое мгновенное значение аналогично закону изменения соответствующей физической величины во времени. Примером аналогового сигнала является некоторое напряжение, которое подано на вход осциллографа, в результате чего на экране возникает непрерывная кривая как функция времени. Поскольку современная обработка непрерывных сигналов с использованием резисторов, конденсаторов, операционных усилителей и т. п. имеет мало общего с аналоговыми компьютерами, термин «аналоговый» сегодня представляется не совсем неудачным. Более корректным было бы называть непрерывной обработкой сигналов то, что сегодня обычно называют аналоговой обработкой сигналов.

В радиоэлектронике и технике связи широко применяются импульсные системы, устройства и цепи, действие которых основано на использовании дискретных сигналов. Например, электрический сигнал, отражающий речь, является непрерывным как по уровню, так и по времени, а датчик температуры, выдающий ее значения через каждые 10 мин, служит источником сигналов, непрерывных по значению, но дискретных по времени.

Дискретный сигнал получают из аналогового путем специального преобразования. Процесс преобразования аналогового сигнала в последовательность отсчетов называется дискретизацией (sampling), а результат такого преобразования - дискретным сигналом или дискретным рядом (discrete series).

Простейшая математическая модель дискретного сигнала
- последовательность точек на временной оси, взятых, как правило, через равные промежутки времени
, называемые периодом дискретизации (или интервалом, шагом дискретизации;sample time), и в каждой из которых заданы значения соответствующего непрерывного сигнала (рис. 3, б). Величина, обратная периоду дискретизации, называется частотой дискретизации (sampling frequency):
(другое обозначение
). Соответствующая ей угловая (круговая) частота определяется следующим образом:
.

Дискретные сигналы могут быть созданы непосредственно источником информации (в частности, дискретные отсчеты сигналов датчиков в системах управления). Простейшим примером дискретных сигналов могут служить сведения о температуре, передаваемые в программах новостей радио и телевидения, в паузах же между таким передачами сведений о погоде обычно нет. Не следует думать, что дискретные сообщения обязательно преобразуют в дискретные сигналы, а непрерывные сообщения - в непрерывные сигналы. Чаще всего именно непрерывные сигналы используют для передачи дискретных сообщений (в качестве их переносчиков, т. е. несущей). Дискретные же сигналы можно использовать для передачи непрерывных сообщений.

Очевидно, что в общем случае представление непрерывного сигнала набором дискретных отсчетов приводит к определенной потере полезной информации, так как мы ничего не знаем о поведении сигнала в промежутках между отсчетами. Однако, существует класс аналоговых сигналов, для которых такой потери информации практически не происходит, и поэтому они могут быть с высокой степенью точности восстановлены по значениям своих дискретных отсчетов.

Разновидностью дискретных сигналов является цифровой сигнал (digital signal), В процессе преобразования дискретных отсчетов сигнала в цифровую форму (обычно в двоичные числа) производится его квантование по уровню (quantization) напряжения . При этом значения уровней сигнала можно пронумеровать двоичными числами с конечным, требуемым числом разрядов. Сигнал, дискретный во времени и квантованный по уровню, называют цифровым сигналом. Кстати, сигналы, квантованные по уровню, но непрерывные во времени, на практике встречаются редко. В цифровом сигнале дискретные значения сигнала
вначале квантуют по уровню (рис. 3, в) и затем квантованные отсчеты дискретного сигнала заменяют числами
чаще всего реализованными в двоичном коде, который представляют высоким (единица) и низким (нуль) уровнями потенциалов напряжения - короткими импульсами длительностью(рис. 3, г). Такой код называют униполярным. Поскольку отсчеты могут принимать конечное множество значений уровней напряжения (см. например второй отсчет на рис. 3, г, который в цифровом виде практически равновероятно может быть записан как числом 5 - 0101, так и числом 4 - 0100), то при представлении сигнала неизбежно происходит его округление. Возникающие при этом ошибки округления называются ошибками (или шумами) квантования (quantization error, quantization noise).

Последовательность чисел, представляющая сигнал при цифровой обработке, является дискретным рядом (discrete series). Числа, составляющие последовательность, являются значениями сигнала в отдельные (дискретные) моменты времени и называются цифровыми отсчетами сигнала (samples). Далее квантованное значение сигнала представляется в виде набора импульсов, характеризующих нули («0») и единицы («1») при представлении этого значения в двоичной системе счисления (рис. 3, г). Набор импульсов используют для амплитудной модуляции несущего колебания и получения кодово-импульсного радиосигнала.

В результате цифровой обработки не получается ничего «физического», только цифры. А цифры - это абстракция, способ описания информации, содержащейся в сообщении. Следовательно, нам необходимо иметь что-то физическое, что будет представлять цифры или «являться носителем» цифр. Итак, сущность цифровой обработки состоит в том, что физический сигнал (напряжение, ток и т. д.) преобразуется в последовательность чисел, которая затем подвергается математическим преобразованиям в вычислительном устройстве.

Трансформированный цифровой сигнал (последовательность чисел) при необходимости может быть преобразован обратно, в напряжение или ток.

Цифровая обработка сигналов предоставляет широкие возможности по передаче, приему и преобразованию информации, в том числе и те, которые не могут быть реализованы с помощью аналоговой техники. На практике при анализе и обработке сигналов чаще всего цифровые сигналы заменяют дискретными, а их отличие от цифровых интерпретируют как шум квантования. В связи с этим эффекты, связанные с квантованием по уровню и оцифровкой сигналов, в большинстве случаев не будут приниматься во внимание. Можно сказать, что и в дискретных и цифровых цепях (в частности, в цифровых фильтрах) обрабатывают дискретные сигналы, только внутри структуры цифровых цепей эти сигналы представлены числами.

Вычислительные устройства, предназначенные для обработки сигналов, могут оперировать с цифровыми сигналами. Существуют также устройства, построенные в основном на базе аналоговой схемотехники, которые работают с дискретными сигналами, представленными в виде импульсов различной амплитуды, длительности или частоты повторения.

Одним из основных признаков, по которым различаются сигналы, является предсказуемость сигнала (его значений) во времени.

Р
ис. 3. Радиотехнические сигналы:

а - аналоговый; б - дискретный; в - квантованный; г - цифровой

По математическому представлению (по степени наличия априорной, от лат. a priori - из предшествующего, т. е. доопытной информации) все радиотехнические сигналы принято делить на две основные группы: детерминированные (регулярные; determined) и случайные (casual) сигналы (рис. 4).

Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны, т. е. предсказуемы с вероятностью, равной единице. Детерминированные сигналы описываются заранее заданными функциями времени. Кстати, мгновенное значение сигнала - это мера того, на какое значение и в каком направлении переменная отклоняется от нуля; таким образом, мгновенные значения сигнала могут быть как положительными, так и отрицательными (рис. 4, а). Простейшими примерами детерминированного сигнала являются гармоническое колебание с известной начальной фазой, высокочастотные колебания, модулированные по известному закону, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известны .

Если бы передаваемое по каналам связи сообщение было детерминированным, т. е. заранее известным с полной достоверностью, то его передача была бы бессмысленной. Такое детерминированное сообщение по сути дела не содержит никакой новой информации. Поэтому сообщения следует рассматривать как случайные события (или случайные функции, случайные величины). Иначе говоря, должно существовать некоторое множество вариантов сообщения (например, множество различных значений давления, выдаваемых датчиком), из которых реализуют с определенной вероятностью одно. В связи с этим и сигнал является случайной функцией. Детерминированный сигнал не может быть носителем информации. Его можно использовать лишь для испытаний радиотехнической системы передачи информации или тестирования отдельных ее устройств. Случайный характер сообщений, а также помех обусловил важнейшее значение теории вероятностей в построении теории передачи информации.

Рис. 4. Сигналы:

а - детерминированный; б - случайный

Детерминированные сигналы разделяют на периодические и непериодические (импульсные). Сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую он предназначен, называют импульсным сигналом.

Случайными называют сигналы, мгновенные значения которых в любой момент времени не известны и не могут быть предсказаны с вероятностью, равной единице. Фактически для случайных сигналов можно знать только вероятность того, что он примет какое-либо значение.

Может показаться, что понятие «случайный сигнал» не совсем корректно.

Но это не так. Например, напряжение на выходе приемника тепловизора, направленного на источник ИК-излучения, представляет хаотические колебания, несущие разнообразную информацию об анализируемом объекте. Строго говоря, все сигналы, встречающиеся на практике, являются случайными и большинство из них представляют хаотические функции времени (рис. 4, б). Как ни парадоксально на первый взгляд, но сигналом, несущим полезную информацию, может быть только случайный сигнал. Информация в таком сигнале заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. Сигналы связи во времени меняют мгновенные значения, причем эти изменения могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Таким образом, сигналы связи являются в некотором роде случайными процессами, поэтому и их описание осуществляется посредством методов, аналогичных методам описания случайных процессов.

В процессе передачи полезной информации радиотехнические сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражают в их названии: сигналы модулированные, демодулированные (детектированные), кодированные (декодированные), усиленные, задержанные, дискретизированные, квантованные и др.

По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

По принадлежности к тому или иному виду радиотехнических систем, и в частности систем передачи информации, различают «связные», телефонные, телеграфные, радиовещательные, телевизионные, радиолокационные, радионавигационные, измерительные, управляющие, служебные (в том числе пилот-сигналы) и другие сигналы.

Приведенная краткая классификация радиотехнических сигналов не полностью охватывает все их разнообразие.



 


Читайте:



Собрал файл сервер для 1с

Собрал файл сервер для 1с

Для начала предлагаю выделить несколько сценариев работы: 1.) Работа с файловой базой через общий ресурс (веб-сервер) 2.) Работа с файловой базой в...

Обработка для выгрузки справочников из 1с 8

Обработка для выгрузки справочников из 1с 8

Я многократно занимался выгрузкой информации о товарах для интернет-сайтов, разрабатывал специальные обработки для загрузки данных в 1с из...

 Система компоновки данных - практика разработкиСКД Консоль - изучение Системы Компоновки Данных OnLine

 Система компоновки данных - практика разработкиСКД Консоль - изучение Системы Компоновки Данных OnLine

Одна из самых важных областей бизнес-софта – это отчетность. От того, насколько легко настроить под меняющиеся потребности бизнеса (и...

История почты и почтовых марок чили Какие бывают трек номера Почты Чили

История почты и почтовых марок чили Какие бывают трек номера Почты Чили

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...

feed-image RSS