Главная - Браузеры
Простая электрическая схема для системы поворота яиц в инкубаторе. Конструкции лотков переворота для инкубатора Цикличные таймеры для инкубатора своими руками схемы

Таймер самодельный для инкубатора

Самый простейший и надежный таймер можно собрать
на одной микросхеме к176ие5 .Этот таймер может
собрать даже начинающий радиолюбитель. Вот схема

Вот что у меня получилось
Это мои собранные схемы
работают без отказа

Данный таймер работает циклично.
При включении таймера сначала отсчитывается пауза (на 5-й ножке DD1 нет напряжения). Во времязадающей цепи задействованы оба резистора - R2, R3. На 1-й, 2-й ножках появляются импульсы - светодиод мигает, всего импульсов - 32. По окончании 32-го импульса на 5-й ножке появляется напряжение - включается исполнительный механизм, а транзистор VT1 включает реле К1. Далее - всё повторяется.
Время паузы подбирается резисторами R2, R3 и конденсатором C2 . Для того чтобы подобрать резисторы времязадающей цепочки - нужно секундомером засечь время между началами двух соседних вспышек светодиода и умножить на 32.


Я думаю здесь все ясно на схеме.Это цикличный таймер
Увеличивая номинал сопротивления R2 можно менять длительность цикла
включения и отключения реле.С номиналом 220 ком приблизительно 1 час
К контактам К1.1 подключается мотор поворота лотков
Если вы используйте мотор постоянного тока то в таймере надо использовать
реле с двойным контактом.



Свернуть

Не все модели инкубаторов оснащены таймером для поворота лотков, а это чревато неправильным дозреванием плода и проявлением у цыплят различных патологий. Сделать такое устройство собственноручно достаточно просто. Рассмотрим назначение прибора, его функциональные особенности и типовые схемы сборки.

Функции и принцип работы

Устройство является типовым реле времени, которое работает по принципу размыкания электрической цепи через равные промежутки времени. Так задается алгоритм на включение и выключение основных узлов. Таймер автоматизирует процесс поворота лотков в инкубаторе и максимально упрощает уход за яйцами.

Основные задачи:

  • включение или отключение освещения;
  • регулирование температуры;
  • принудительная вентиляция;
  • реализация переворота для инкубатора.

Важно отметить, что не каждая микросхема подходит для перенастройки в реле времени. Главное условие – высокое сопротивление подключаемого элемента при низком напряжении тока. Рекомендуется применять платы собранные по КМОП технологии, т.е. с наличием n и p канальных транзисторов.

Чтобы реле было надежным и долговечным, нужно использовать специализированную схему подключения. Наиболее простые в реализации:

  • К176ИЕ5;
  • КР512ПС10.

Первый таймер выполняет цикл:

  • включение;
  • настраиваемая пауза;
  • подача импульсов на светодиод (32 шт.);
  • отключение резистора;
  • подача заряда на узел;
  • размыкание цепи;
  • повтор.

Главное достоинство данной схемы в ее простоте. Любой шаг может быть настроен в соответствии с особенностями технологического процесса созревания яиц.

Схема К176ИЕ5

Схема КР512ПС10 не намного сложнее, однако обладает расширенным функционалом, который достигается за счет наличия предустановленных входов с заданными коэффициентами деления. Для наглядности рассмотрим чертеж:

Схема КР512ПС10

Чтобы задать временной интервал, необходимо настроить R1, C1 и установить соответствующее число перемычек. Доступные конфигурации:

  • 0,1-60 секунд;
  • 1-60 минут;
  • 1-24 часа.

При необходимости есть возможность расширить временной интервал до 2-3 суток, однако это потребует установки более мощных резисторов. В отличие от предыдущей схемы, КР512ПС10 работает нециклично, доступны два режима:

  • переменный, задается перемычкой S1, цепь размыкается через равные промежутки, время работы равно времени простоя;
  • постоянный, цепь включается с установленной задержкой и не размыкается до тех пор, пока не отключить питание.

Обе схемы продаются в магазинах радиотоваров. Если воспользоваться инструкцией, их подключение не вызовет сложностей даже у новичков. Рассмотрим, как сделать самодельный таймер для инкубатора, и определим основные моменты, на которые стоит обратить внимание.

Набор инструментов и комплектующих

Для проверки и последующей перепаковки схем подготовьте:

  • пассатижи;
  • паяльник для радиодеталей (с тонким жалом);
  • канифоль и олово;
  • тестер/отвертку с индикатором;
  • набор резисторов разной мощности;
  • 3-4 запасных светодиода;
  • часы с секундомером.

Чтобы быстро коротить резисторы, лучше всего использовать нож с узким лезвием.

На базе микросхемы К176ИЕ5: подробная инструкция

Таймер для инкубатора на К176ИЕ5 с печатной платой практически не нуждается в настройке.

Возможны два варианта:

  1. Длительная задержка цикла. Находим резисторы R3 и R4, они отвечают за время работы и паузы. Чем выше сопротивление резистора, тем длиннее цикл. Чтобы узнать временной промежуток, нужно засечь, сколько проходит между миганиями диода, и умножить полученную цифру на 32. Подобное реле времени для инкубатора будет переворачивать лотки с яйцами раз в 3-5 часов. При увеличении времени паузы стабильная работа схемы не гарантируется. Кроме того, в этом случае период работы будет близок периоду паузы. Это чревато тем, что яйца будут крутиться как на вертеле на протяжении тех же 3-5 часов.
  2. Кратковременная задержка цикла. Закоротить резистор R4, отмерить продолжительность 32 миганий и установить фактическое время работы. В этом случае пауза также составит 3-5 часов, однако работу цепь будет выполнять всего 30-50 секунд. Этого вполне достаточно для поворота среднего лотка с куриными яйцами на 180 градусов. Чем крупнее размер, тем меньше ход. Конкретные параметры необходимо настраивать в соответствии с типом яиц, размерами лотка и поворотным механизмом.

Типовой набор комплектующих:

  • транзисторы КТ315;
  • Реле – РЭС-6, РЭС-22;
  • R3 – единицы кОм;
  • R4 – сотни кОм, единицы мОм;
  • дополнительные резисторы проверяются через диод 9 В и выше.

Самодельное устройство долговечно и не нуждается в уходе. Опасаться нужно механических повреждений. К поломке часто приводят и некачественные детали. Если в базовую плату вносятся изменения и происходит замена резисторов или транзисторов, они должны быть рассчитаны на соответствующую нагрузку.

Не стоит использовать данный таймер для решения нескольких задач, одно устройство включает и выключает конкретную цепь. Для автоматизации других процессов нужно новое реле времени.

На базе микросхемы КР512ПС10: подробная инструкция

Этот таймер для инкубатора своими руками сделать еще проще, чем предыдущий. Печатная плата сразу же снабжена встроенной автоматикой, которая позволяет легко настраивать время работы и паузы. Для этого меняют входы, что позволяет увеличить максимальное время паузы до двух суток, а работы – до 2 часов.

Работа устройства основа на двух сигналах. Первый передает ток на исполняющий механизм и приводит его в действие. Второй создает цикличные импульсы, периодичность которых определяет время работы и паузы.

Платы поставляются в разной комплектации, поэтому вручную вносить правки в микросхему, как правило, не нужно. Если такая необходимость возникла:

  • найдите резистор R1;
  • закоротите его;
  • засеките время, которое потребуется на поворот лотка;
  • подключите резистор и установите точное время работы.

Самодельный таймер для инкубатора рассчитан на бытовое применение, в инкубаторах, где подача тепла происходит порционно. Фактически, устройство приводит лоток в движение через определенное время после включения нагревателя, и через равные промежутки времени осуществляется повторение цикла.

Если сам инкубатор сделан на базе или по схеме промышленного образца КР512ПС10 подойдет идеально. Особенность подобных агрегатов в том, что они используют мощные нагревательные элементы, которые требуют постоянного вращения лотка. Поскольку плата способна посылать импульс в формате, когда время паузы равно работе, ее легко настроить в унисон с обогревателем.

Альтернативные варианты

Таймера для инкубатора собирается и на платах типа:

  • MC14536BCP;
  • CD4536B.

Эти микросхемы отличаются тем, что имеют более высокий диапазон питания, до 18 В. На практике получаем расширение по мощности используемых транзисторов, соответственно время паузы и работы увеличивается.

Механизм настройки точно такой же:

  • отмерять мигание диода;
  • закоротить резистор, отвечающий за паузу;
  • замерять точное время работы;
  • установить параметры;
  • поместить плату в защитный корпус.

В бытовом применении необходимость в подобных решениях возникает редко. Однако на базе указанных плат легко можно сделать реле времени для нагревательного элемента, а в дальнейшем модернизировать его и использовать в качестве автоматики для кормления и подачи воды цыплятам.

В специализированных магазинах продаются уже готовые таймеры для инкубаторов. Поценные варианты в большинстве случаев сделаны в Китае, поэтому качество их работы не всегда находится на высоком уровне.

Сделать реле времени самостоятельно не сложно. Процесс не займет больше 30-40 минут. В результате получите надежную автоматику, четко заточенную под параметры вашего инкубатора.

Видео

Ваша сноска не работает. Это какой то форум, где искать градусники не понятно.
Что бы мне была понятна Ваша проблема, скажите, на сколько яиц планируется инкубатор? Думаю, что нет смысла повторять схему промышленного. Можно взять от него основные параметры для обеспечения % вывода яиц. Это, поворот должен происходить каждый час. Схема поворота должна быть снабжена счётчиком числа поворотов. Иначе Вы не будете знать работают повороты или нет.
Это правильно, что схема 12-и вольтовая. Можно, на период инкубации, поставить аккумулятор как резервное питание. Внутри камера должна быть снабжена вентилятором, который работает всё время инкубации. Но, ежедневно 1 раз в сутки, инкубатор отключается минут на 40 - 1 час, его двери открываются для свободного доступа воздуха. Это имитация, что курица пошла по своим делам, ну поесть например.
Если яиц достаточно много, ну 400 - 500 шт, инкубатор должен быть снабжён системой охлаждения. В начальной стадии инкубации, через несколько дней после закладки яиц, они сами начинают выделять тепло, и потерь тепла через стенки инкубатора может не хватить для нормальной температуры в инкубаторе. Разброс температуры допускается +/- 0,3 С. В реалии она колеблится +/- 0,1 - 0,15 гр. Кроме того должна быть предусмотрена система вентиляции - постоянный приток свежего воздуха в небольших количествах. Иначе яйцо задохнётся. И в связи с этим - нельзя мыть инкубационное яйцо - забиваются его поры. С другой стороны оно должно быть чистым. В жизни курица чистит яйцо своими перьями. Как это делается в инкубаторе я не знал или забыл. Есть предположение, что его чистят щётками, но точно как делают, в этом случае, не знаю. Спросить мне вроде не у кого. Так же не помню как ложится яйцо в лоток (я ведь никогда его туда не ложил, только видел) но знаю точно - не как попало. Пишу это для того, что бы Вы обратили на это внимание.
Контроль влажности производится психрометром. Это конец с ртутью эл.контактного термометра обмотан 3-мя 4- мя слоями марли (узким бинтом) к которому постоянно подаётся вода (бинт влажный). При нормльной влажности в инкубаторе, температура на термометре на 7 гр. меньше температуры инкубатора. (Если у Вас есть возможность это проверить - проверьте, так же мог забыть) Прекратил работать энергетиком птичника в 1987 году, срок прошёл не малый. Повышение влажности в инкубаторе достигается тем, что на нагревательные элементы (тены) капает вода, а так как они достаточно раскалены, вода сразу испаряется. При достижении требуемой влажности эл.магнитный клапан перекрывает подачу воды.
i.caam.ru/sales/prom/rtutnij_kontaktnij_...H00030d04_339293.jpg
Яйца в лоток укладывают вертикально, тупым
концом вверх, в шахматном порядке. В лотки,
рассчитанные на куриное яйцо, перепелиные
яйца можно уложить в два ряда, а накануне
вывода переложить в выводковые лотки.
После заполнения лотка яйца желательно
продезинфицировать. Самым доступным
методом является обработка бытовым
ультрафиолетовым излучателем в течение 5-8
мин. c расстояния 40 см.

"Пуск"- обычный тумблер с фиксацией.
Если, вдруг, что не понятно по схеме - спрашивайте. ОПЕЧАТКА - выход DD1.3 и входа DD1.4 соединить вместе.

Долог и нелегок путь человека, решившего построить, что-то своими руками. Наконец дошло время и до инкубатора. Помню, еще в детстве отец мечтал построить такое чудо, были попытки, и даже был выводок гусят, а вот с цыплятами не повезло. Прошли годы, отца не стало.… Пришел мой черед воплотить его мечты в жизнь.

Сегодня я уже точно знаю, какие ошибки нами были совершены тогда, каковы условия для успешной инкубации. Благо есть Интернет, а в те далекие годы информации было очень мало, все делалось путем проб и ошибок.

Прежде чем приступить к выбору схемы, припомнил моменты, как мы боролись с перегревом, который был инертный, ибо инкубатор грелся после отключения по инерции. От того ручку настройки постоянно крутили, то в плюс, то в минус.

Всем хороши цифровые терморегуляторы, но этого недостатка им не избежать. Потому как режим инкубации происходи путем включения и отключения нагревателя.

А ведь птица не вскакивает постоянно с гнезда. Значит, для нормальной инкубации быть ближе к природе необходимость. Следовательно, должен соблюдаться баланс. Ведь если посмотреть баланс есть во всем. И нарушая его, ничего хорошего не произойдет.

Значит, нужна схема, которая обеспечит плавную регулировку и нагрев, поддерживая заданную температуру. И такая схема есть!


После сборки схемы были сомнения, а работоспособно ли все это, а может зря решил с цифрового перейти на аналоговый режим? Однако, уже при самой инкубации обнаружил, что это чудо, а не схема:

1. Доступность элементов схемы.
Наверное труднее всего было найти германиевый диод Д7 выполняющий роль термодатчика, причем подходит с любой буквой. Уж больно старый, давно не выпускают. Кремневые не подходят однозначно. Можно использовать переход германиевых транзисторов типа: МП-40, МП-41, МП-42, МП-38 подойдут и более мощные. Вполне работоспособно.

Кстати, в новом, большом инкубаторе, который собираюсь строить, хочу заменить составной аналог однопереходного транзистора VT1-VT2, одним транзистором КТ117 . Это еще больше упростит схему.

Тиристор КУ202 подойдет с любой буквой, обязательно крепить на радиатор. Можно установить КУ221, однако они имею разные корпуса, что надо учитывать при изготовлении печатной платы.

Стабилитроны VD6, VD7, VD8- заменил на Д814А так как их в старых платах в избытке. Стабилитроны VD6, VD7 можно заменить одним стабилитроном с напряжением стабилизации 16 Вольт, например КС216Ж.

В качестве диодного моста применил диодную сборку КЦ 402 в принципе не столь существенно при такой нагрузке.

Транзистор VT1 можно заменить на КТ-501, КТ-3107,КТ-209, КТ502; транзистор VT2 и VT3- на КТ-503, КТ-3102, КТ-611. Чувствительность термодатчика сильно зависит от коэффициента усиления по току β=60-100 транзистора VT3. чем больше коэффициент, тем больше чувствительность, а следовательно и точность поддержания температуры.

В качестве диода VD5- можно использовать практический любой кремневый диод средней мощности. Типа КД 209 и т д, ну или Д226 на худой конец. Толстый конец)))) .. «Великий, могучий, правдивый и свободный русский язык» (И.С. Тургенев) И здесь пошлость, все от воспитания)))))

Конденсатор С1 имеет очень важное значение потому подберите хороший «кондер» К71-5 или МБМ, 0.1мкФ вольт эдак на 160.

2. Чувствуешь удовольствие в точности регулировки заданной температуры. Особо хочу отметить необходимость качественного регулятора (резистора R6- 100 кОм.) Это позволит наслаждаться плавной настройкой температуры. Да, еще в качестве ручки используйте набалдашник с большим диаметром, чем больше, тем плавне регулировка температуры.

3. Совершенно неприхотлива к броскам напряжения. Точность поддержания заданной температуры в пределах ± 0,1°C.

Стабилитрон VD8 необходим для стабилизации работы составного транзистора VT1-VT2. Если им пренебречь, то точность поддержания температуры будет плавать в очень широких пределах ±2°C. Что конечно не есть «гуд».

4. Схема очень проста в настройке. Резистор R3 определяет напряжение открывания VT1-VT2 иногда приходиться подбирать, лучше на время установить построечный на 20кОм, стабилитрон VD8 также на время настройки отключают. Добившись устойчивой работы, схему восстанавливают, построечный резистор заменяют постоянным. Так же возможно продеться настроить резистор R2. Хотя схема работать начинает и без настройки, все от «вкуса» и желания..

5. Экономична до безумия. В рабочем состоянии потребляет около 11 Вт. И это при закладке 100 яиц.

6.Надежна и неприхотлива.

Инкубатор практически без перерыва проработал с марта месяца по август, включительно. Первые 2 выводка постоянно смотрел температуру и. т. д. , другими словами не доверял технике. Но уже потом, вспоминал об инкубаторе, только доливая воду, и когда появлялись на свет цыплята. Ито порой вспоминал, когда начинался страшный писк. Смотрю, а они уже бегают в выводном лотке, вывалившись из лотков инкубационных. За несколько месяцев инкубации ни разу не попадались «задохлики», выводок крепкий, не было гибели цыплят и в процессе выращивания. Секрет оказался прост, при такой схеме не требуется регулирование воздуха в инкубационную камеру. Отверстия подачи воздуха открыты постоянно. Много воздуха для птицы плохо не бывает! Ведь схема поддерживает баланс температуры и воздуха (микроклимат). Хотя, когда выключили свет, пришлось закрыть все отверстия, температура за 3 часа упала только на 2,1 градуса. Но это отдельная тема. В качестве нагревательного элемента использовал 1 лампочку на 100 Вт. Для обогрева 100 яиц этого достаточно с лихвой. Тем более горит она еле-еле (зависит от заданной температуры).

В момент включения инкубатора лампочка (нагреватель) EL1 горит во весь накал. По мере повышения температуры в инкубационной камере, накал EL1(лампочки) уменьшается. И при достижении заданной температуры, устанавливается баланс температуры, поступающего и отходящего воздуха. Инкубатор входит в рабочий режим.

Если температура в инкубаторе понижается, например вы открыли дверцу инкубатора. Сопротивление диода VD9 увеличивается, транзистор VT3 закрывается и не оказывает никакого влияния на VT1-VT2. При этом начале каждого полупериода напряжения сети тиристор открывается. Лампочка EL1(нагреватель) горит ярко.

В случае повышения температуры в инкубаторе термодатчик VD9 теряет свое сопротивление тем больше чем выше температура, тем самым открывая транзистор VT3 который шунтирует конденсатор С1- 01мкФ.

Конденсатор станет, заряжается значительно дольше, что в свою очередь задержит включение аналога однопереходного транзистора VT1, VT2. Соответственно управляемый им тиристор VS1 будет открываться значительно реже, а следовательно лампа (нагреватель) TL1 будет гореть не в полный накал или совсем погаснет.

Когда температура в инкубационной камере будет постоянной (рабочей), которую вы установили резистором R6. транзистор VT3 откроется почти полностью, уменьшая нагрев в камере. Тем самым, достигая баланса заданной температуры, входящего и выходящего воздуха, отдавая ровно столько тепла, сколько уходит через вентиляционные отверстия. Причем такое состояние баланса в закрытой инкубационной камере может держаться сколько угодно.

Влажность в инкубаторе поддерживал с помощью ванночек с водой. Причем для увеличения влажности до 75% ванночками устилал всю площадь пола. Воду доливал через день-два. Для контроля влажности применил электронный гигрометр (погодная метеостанция). А для контроля температуры использовал электронный медицинский термометр, у которого датчик (наконечник) вырезал и на длинных проводниках вывел и скрепил вместе с датчиком температуры диодом VD9. Таким образом, была обеспечена синхронность регулятора температуры и термометра. Хотя вначале использовал для контроля температур в разных точках инкубационной камеры очень точные ртутные термометры, образца 1969 года, (СССР рулит) которые остались от отца. Для настройки они замечательные, а для работы нет, очень плохо видно ртутный столбик. Хотя более точных термометров я не видел. Купил несколько современных термометров, смеялся до упада. Разница в температуре до 10 градусов)))причем в одном месте, термометры одного производителя, на вид одинаковые))). Им вообще кто то калибровку шкалы делает или все на потоке стоит?)))) В общем маде ин РАША!)) Не стану называть производителя….. выкинул их к едрёне фене.

Так же добавил таймер на 60 минут для поворота лотков. Для равномерности нагрева яиц воздух в инкубаторе перемешивается обычным куллером (от блока питания компьютера). Установлен на полу. Питание подключил от схемы таймера. Причем куллер тянет воздух, от лампочки ударяя потоком в угол стены и двери.

Данная схема отличается простотой и высокой надёжностью.

Двигатель поворота лотков включается каждые 60 минут и поворачивает все лотки на 90 градусов, то в одну сторону, то в другую.
На транзисторах Т1-кт315 и Т2-кт315 собран триггер, состояние которого зависит от того, какой из герконов В1 или В2 замкнут или в каком из положений находятся лотки с яйцами. В качестве выключателей В1-В2 использовал герконы. Переключение герконов происходит при помощи магнитов закрепленных на лотке.

Когда лоток с магнитом поворачивается в право, магнит включает геркон В1 , привод останавливается, а через 60 минут, снова включается для движения в противоположном направлении, пока магнит расположенный с другой стороны лотка не достигнет геркона В2. Через 60 минут процесс повторяется.
Включением реле Р1, изменяется направление вращения двигателя контакты К1.2-К1.3
Контакты реле Р1 , К1.1 переключают схему в ждущий режим.
Реле времени собрано на микросхеме К176ИЕ5, транзисторе Т4 -КТ815 и реле Р2. Конденсатор С7-0,22мкф обеспечивает время выдержки 60 минут. Сброс счётчика реле времени происходит, когда срабатывает один из концевых выключателей и переключает состояние триггера для начала нового отсчёта, через цепочку Д1 С2 во время установки лотков в одно из устойчивых положений.

Спустя 60 минут реле времени открывает транзистор Т4 который в свою очередь вызывает срабатывание реле Р2, которое и своими контактами К2.1 подают напряжение на электродвигатель поворота лотков. Так и происходит периодический поворот лотков.
Транзисторы: Т1.Т2 -КТ315, ТЗ,Т4,-КТ815,
Микросхемы: К176ИЕ5, КРЕН8А
Диоды: Д1-КС156, Д2-Д809,
Герконы - от сигнализации, которые устанавливаются на дверях. Можно заменить концевыми выключателями. Тогда магниты не нужны.
Резисторы: R1, R2, R7, - З ком; RЗ,R4,R9,-27 ком;R5,Rб, -15ком; R8-2,2мом; R10-120ком, R11-1ком; R12, -220ом;
Конденсаторы: С1-200,0мкф на 16в; С2-0,01мкф; С7-0,22мкф,
Электромагнитные реле: Р1,Р2-Реле РС9 или любые на 12в.
Двигатель М- 12 вольт от старого видеомагнитофона с редуктором.

Надо сказать, что вначале лоток поворачивался при помощи шнура, но мне не понравилось, так как лоток резко опрокидывался на другую сторону. Потому система поворота была переделана на редукторную, с использованием частей приемника кассеты старого видеомагнитофона.
ТР1-Трансформатор силовой малой мощности понижающий на 12-15в и ток 0,5 - 1А.
Диодный мост в моем случае собран на диодах кд226 -ну что было под руками.

В настройке схема не нуждается, ну разве, что подбором С7- можно изменить время ожидания до следующего поворота.

Предлагаю вам собрать рабочий инкубатор с автоматическим переворотом яиц. Чтобы сделать самодельный инкубатор своими руками с автоматическим переворотом яиц нам понадобятся Реле времени и схема подключение реверсивного двигателя РД-09.

Принцип работы электронного реле времени основан на времени заряда и разряда конденсатора. Правильно подобрав соотношения сопротивления R1 и емкость конденсатора С1 ми можем подобрать любое время срабатывания. но нужно учитывать, что время заряда и разряда конденсатора одинаковы, то есть нам в инкубатор с автоматическим переворотом яиц подойдет по той простой причине. что переворот происходит через равные периоды времени - 2 часа. Мы подбираем сопротивление и емкость с таким расчетом чтобы периоды разряда/заряда были равны 2 часам. На схеме электронного реле времени это выглядит так - как только происходит полный заряд или полный разряд микросхема выдает сигнал на базу транзистора, который работает в режиме электронного ключа. Транзистор в свою очередь либо открыт либо закрыт. Он либо подает ток на питание катушки реле, либо не подает, это приводит в действие контакты релюшки. А реле в свою очередь управляет реверсивним двигателем РД-09.

Схема подключения реверсивного двигателя РД-09 №1:

Схема подключения реверсивного двигателя РД-09 №2:

Принцип работы реверсивного двигателя тоже предельно прост. Управляемый релюшкой он через равные промежутки времени крутится то в одну то в другую сторону. Приводя в движение исполнительным механизм уже механического переворота лотков с яйцами инкубатора. Таким образом мы достигаем нашей цели - Самодельный инкубатор с автоматическим переворотом яиц. Микровыключатели служат для того, чтобы приводимая в движение механическая часть - исполнительный механизм, останавливал лотки в строго заданных диапазонах, под строго определенным углом поворота или наклона лотков инкубатора с автоматическим переворотом яиц. Таким образом получается отлично работающее устройство, которое благодаря минимуму недорогих деталей можно собрать самому. Другой вариант схемы смотрите по ссылке.


Продолжая тему Автоматический переворот яиц в самодельном инкубаторе:
 


Читайте:



Flood Control ВКонтакте: рассказываем почему возникает проблема и как ее можно убрать Значит flood control

Flood Control ВКонтакте: рассказываем почему возникает проблема и как ее можно убрать Значит flood control

Быстрое решение Чаще всего такая ошибка выскакивает, когда ставишь лайк. Появляется окно Flood Control и лайк не ставится. Ошибка бывает и на...

Зарядное устройство на основе блока питания ATX Лабораторный блок питания на шим контроллере 3528

Зарядное устройство на основе блока питания ATX Лабораторный блок питания на шим контроллере 3528

Если раньше элементная база системных блоков питания не вызывала ни каких вопросов - в них использовались стандартные микросхемы, то сегодня мы...

Что делать если провод не заряжает айфон

Что делать если провод не заряжает айфон

Оригинальные зарядные устройства для устройств Apple стоят недешево, поэтому многие предпочитают использовать китайские копии, которые отличаются...

Виртуальная машина для Mac Виртуальная windows на mac os

Виртуальная машина для Mac Виртуальная windows на mac os

macOS – отличная операционная система, которая, как и «конкурентная» Windows или открытая Linux, имеет свои достоинства и недостатки. Любую из этих...

feed-image RSS