Главная - Новичкам
Оценки спектральной плотности мощности сигнала. Спектральная плотность мощности

Наиболее важной характеристикой стационарных случайных процессов является спектральная плотность мощности, описывающая распределение мощности шума по частотному спектру. Рассмотрим стационарный случайный процесс, который может быть представлен беспорядочной последовательностью импульсов напряжения или тока, следующих друг за другом через случайные интервалы времени. Процесс со случайной последовательностью импульсов является непериодическим. Тем не менее, можно говорить о спектре такого процесса, понимая в данном случае под спектром распределение мощности по частотам.

Для описания шумов вводят понятие спектральной плотности мощности (СПМ) шума, называемой также в общем случае спектральной плотностью (СП) шума,которая определяется соотношением:

где P (f ) - усредненная по времени мощность шума в полосе частотf на частоте измеренияf .

Как следует из соотношения (2.10), СП шума имеет размерность Вт/Гц. В общем случае СП является функцией частоты. Зависимость СП шума от частоты называют энергетическим спектром , который несет информацию о динамических характеристиках системы.

Если случайный процесс эргодический, то можно находить энергетический спектр такого процесса по его единственной реализации, что широко используется на практике..

При рассмотрении спектральных характеристик стационарного случайного процесса часто оказывается необходимым пользоваться понятием ширины спектра шума. Площадь под кривой энергетического спектра случайного процесса, отнесенную к СП шума на некоторой характерной частоте f 0 , называютэффективной шириной спектра , которая определяется по формуле:

(2.11)

Эту величину можно трактовать как ширину равномерного энергетического спектра случайного процесса в полосе
, эквивалентного по средней мощности рассматриваемому процессу.

Мощность шума P , заключенная в полосе частотf 1 …f 2 , равна

(2.12)

Если СП шума в полосе частот f 1 ...f 2 постоянна и равнаS 0 , тогда для мощности шума в данной полосе частот имеем:
гдеf =f 2 -f 1 – полоса частот, пропускаемая схемой или измерительным прибором.

Важным случаем стационарного случайного процесса является белый шум, для которого спектральная плотность не зависит от частоты в широком диапазоне частот (теоретически – в бесконечном диапазоне частот). Энергетический спектр белого шума в диапазоне частот -∞ < f < +∞ дается выражением:

= 2S 0 = const, (2.13)

Модель белого шума описывает случайный процесс без памяти (без последействия). Белый шумвозникает в системах с большим числом простых однородных элементов и характеризуется распределением амплитуды флуктуаций по нормальному закону. Свойства белого шума определяются статистикой независимых одиночных событий (например, тепловым движением носителей заряда в проводнике или полупроводнике). Вместе с тем истинный белый шум с бесконечной полосой частот не существует, поскольку он имеет бесконечную мощность.

На рис. 2.3. приведена типичная осциллограмма белого шума (зависимость мгновенных значений напряжения от времени) (рис. 2.3а) и функция распределения вероятности мгновенных величин напряжения e ,которая является нормальным распределением (рис. 2.3б). Заштрихованная площадь под кривой соответствует вероятности появления мгновенных величин напряженияe , превышающих значениеe 1 .

Рис. 2.3. Типичная осциллограмма белого шума (а) и функция распределения плотности вероятности мгновенных величин амплитуды напряжения шума (б).

На практике при оценке величины шума какого-либо элемента или п/п прибора обычно измеряют среднеквадратичное шумовое напряжение в единицах В 2 или среднеквадратичный токв единицах А 2 . При этом СП шума выражают в единицах В 2 /Гц или А 2 /Гц, а спектральные плотности флуктуаций напряженияS u (f ) или токаS I (f ) вычисляются по следующим формулам:

(2.14)

где
и – усредненные по времени шумовое напряжение и ток в полосе частотf соответственно. Черта сверху означает усреднение по времени.

В практических задачах при рассмотрении флуктуаций различных физических величин вводят понятие обобщенной спектральной плотности флуктуаций. При этом СП флуктуаций, например, для сопротивления R выражается в единицах Ом 2 /Гц; флуктуации магнитной индукции измеряются в единицах Тл 2 /Гц, а флуктуации частоты автогенератора – в единицах Гц 2 /Гц = Гц.

При сравнении уровней шума в линейных двухполюсниках одного и того же типа удобно пользоваться относительной спектральной плотностью шума, которая определяется как

=
, (2.15)

где u – падение постоянного напряжения на линейном двухполюснике.

Как видно из выражения (2.15), относительная спектральная плотность шума S (f ) выражается в единицах Гц -1 .

Пусть дан некоторый сигнал , который характеризует изменение напряжения или силы тока во времени. Тогда будет определять мгновенную мощность, выделяемую на сопротивлении 1 Ом.

Проинтегрируем мгновенную мощность на некотором интервале времени и получим энергию сигнала на данном интервале:

Тогда средняя мощность сигнала на данном интервале времени равна:

Если сигнал является периодическим, то среднюю мощность можно получить путем усреднения на одном периоде повторения сигнала. В случае абсолютно-интегрируемого непериодического сигнала , интервал интегрирования может быть расширен на всю ось времени:

Можно заметить, что средняя мощность абсолютно-интегрируемого непериодического сигнала равна нулю при усреднении на бесконечном интервале времени. Аналогично, энергия периодического сигнала на всей оси времени равна бесконечности.

Таким образом, периодические сигналы, повторяющиеся на все оси времени мы можем характеризовать конечной средней мощностью , поскольку их энергия бесконечна. Непериодические сигналы характеризуются конечной энергией , потому что их средняя мощность на все оси времени равна нулю.

Выражения (1)-(3) справедливы и для комплексного сигнала . В этом случае, мгновенную мощность можно определить как .

Скалярное произведение сигналов. Обобщенная формула Рэлея

Пусть даны два сигнала и , в общем случае комплексные. Скалярным произведением сигналов называется величина равная:

Интеграл (4) возвращает одно число (скаляр), в общем случае комплексное.

Заметим, что скалярное произведение сигнала с самим собой возвращает энергию данного сигнала:

Тогда скалярное произведение (4) можно трактовать как величину взаимной энергии сигналов и , т.е. степень взаимного влияния одного сигнала на другой. Если два сигнала и имеют нулевое скалярное произведение, то говорят, что они ортогональны.

Подставим в (4) вместо обратное преобразование Фурье его спектральной плотности . Тогда:

Поменяем в (6) порядок интегрирования:

Можно сделать вывод: скалярное произведение сигналов во временно́й области, с точностью до множителя , равно скалярному произведению спектральных плотностей данных сигналов. Выражение (7) носит название обобщенной формулы Рэлея .

Равенство Парсеваля

Ранее мы уже рассматривали равенство Парсеваля, связывающее среднюю мощность периодического сигнала. Для непериодических сигналов мы можем получить аналогичное равенство энергии сигнала во времени и в частотной области. Для этого в обобщенную формулу Рэлея подставим и получим:

Или с учетом (4) равенство Парсеваля :

Таким образом, энергия сигнала во временно́й и частотной областях равна с точностью до множителя .

Если в выражениях (7)-(9) использовать частоту , выраженную в герц, вместо циклической частоты , измеряемой в единицах рад/c, то и множитель сокращается:

Спектральная плотность энергии сигнала

При рассмотрении предельного перехода к преобразованию Фурье было введено понятие спектральной плотности сигнала и была приведена аналогия поясняющая понятие спектральной плотности, и ее отличие от спектра периодического сигнала.

Из равенства (9) следует, что энергия сигнала может быть представлена как интеграл по всей оси частот:

Тогда использую ту же аналогию, что и в разделе, в частности сравнивая (12) с, можно заключить, что представляет собой спектральную плотность энергии сигнала. Проинтегрировав по всей оси , мы получим полную энергию сигнала, равно как проинтегрировав плотность стержня по длине мы получим полную массу. Спектральная плотность энергии представляет собой квадрат АЧХ сигнала. Кроме того является вещественной неотрицательной функцией частоты . Спектральная плотность энергии сигнала измеряется в единицах джоуль на герц (Дж/Гц) или ватт, умноженный на секунду в квадрате (Втс).

Сделаем важное замечание. Спектральная плотность энергии игнорирует ФЧХ сигнала. Тогда можно заключить, что одной и той же спектральной плотности энергии могут соответствовать множество различных сигналов, имеющих одинаковую АЧХ и различные ФЧХ.

Спектральные плотности сигналов имеют убывающий по частоте характер , и на практике анализ поведения убывающей спектральной плотности с ростом частоты имеет важное значение. Однако графический анализ бывает затруднителен ввиду высокой скорости убывания спектральной плотности по частоте, а в случае спектральной плотности энергии затруднителен вдвойне, поскольку возведение АЧХ в квадрат только ускоряет убывание. Поэтому широкое распространение получило представление спектральной плотности энергии в логарифмическом масштабе, выраженной в единицах децибел (дБ):

В качестве примера на рисунке 1 приведены спектральные плотности энергии прямоугольного, треугольного, двустороннего экспоненциального и гауссова импульсов в линейном и логарифмическом масштабе.

Рисунок 1. Спектральная плотность энергии некоторых сигналов
а — в линейном масштабе; б — в логарифмическом масштабе

Как видно из рисунка 1а, спектральные плотности энергии импульсов в линейном масштабе практически сливаются и очень сложно различимы.

В логарифмическом масштабе (рисунок 1б), спектральные плотности энергии обнаруживают значительные отличия. Треугольный и экспоненциальный импульсы имеют одинаковую скорость убывания спектральной плотности энергии, а прямоугольный импульс имеет очень медленное затухание спектральной плотности энергии с ростом частоты. Гауссов импульс, напротив, отличается очень быстрым затуханием .

Логарифмическая шкала представления спектральной плотности энергии оказывается удобной при сравнении характеристик сигналов. Если энергии двух сигналов отличаются в 100 раз, то в логарифмической шкале отношение их энергий составляет 20 дБ. Если же энергии отличаются в 1000000 раз, то в логарифмической шкале это соответствует 60 дБ. Удвоение энергии сигнала, в логарифмической шкале соответствует прибавлению 3 дБ.

Выводы

В данном разделе мы рассмотрели энергетические характеристики периодических и непериодических сигналов. Мы показали, что периодические сигналы имеют бесконечную энергию, но конечную среднюю мощность. Средняя мощность непериодических сигналов стремится к нулю, а их энергия конечна.

Было введено понятие скалярного произведения сигналов и получена обобщенная формула Релея,связывающая скалярное произведение во временной и частотной областях.

Установлено равенство Парсеваля для непериодических сигналов, как частный случай формулы Релея.

Введено понятие спектральной плотности энергии как квадрата модуля спектральной плотности сигнала. Также рассмотрено представление спектральной плотности энергии в линейном и логарифмическом масштабе для различных сигналов.

Смотри также

Преобразования Фурье непериодических сигналов
Свойства преобразования Фурье
Спектральные плотности некоторых сигналов

Список литературы

Баскаков, С.И. Москва, ЛЕНАНД, 2016, 528 c. ISBN 978-5-9710-2464-4


Гоноровский И.С. Радиотехнические цепи и сигналы Москва, Советское радио, 1977, 608 c.

Международная образовательная корпорация

Факультет Прикладных Наук

Реферат

на тему «Спектр плотности мощности и его связь с функцией корреляции»

По дисциплине «Теория электрической связи»

Выполнила: студент группы

ФПН-РЭиТ(з)-4С *

Джумагельдин Д

Проверила: Глухова Н.В

Алматы, 2015

І Введение

ІІ Основная часть

1. Спектральная плотность мощности

1.1 Случайные величины

1.2 Плотность вероятности функции от случайной величины

2. Случайный процесс

3. Метод определения спектральной плотности мощности по корреляционной функции

ІІІ Заключение

ІV Список использованной литературы

Введение

Теория вероятностей рассматривает случайные величины и их характеристики в "статике". Задачи описания и изучения случайных сигналов "в динамике", как отображения случайных явлений, развивающихся во времени или по любой другой переменной, решает теория случайных процессов.

В качестве универсальной координаты для распределения случайных величин по независимой переменной будем использовать, как правило, переменную "t" и трактовать ее, чисто для удобства, как временную координату. Распределения случайных величин во времени, а равно и сигналов их отображающих в любой математической форме, обычно называют случайными процессами. В технической литературе термины "случайный сигнал" и "случайный процесс" используются как синонимы.

В процессе обработки и анализа физико-технических данных обычно приходится иметь дело с тремя типами сигналов, описываемых методами статистики. Во-первых, это информационные сигналы, отображающие физические процессы, вероятностные по своей природе, как, например, акты регистрации частиц ионизирующих излучения при распаде радионуклидов. Во вторых, информационные сигналы, зависимые от определенных параметров физических процессов или объектов, значения которых заранее неизвестны, и которые обычно подлежать определению по данным информационным сигналам. И в третьих, это шумы и помехи, хаотически изменяющиеся во времени, которые сопутствуют информационным сигналам, но, как правило, статистически независимы от них как по своим значениям, так и по изменениям во времени.



Спектральная плотность мощности

Спектральная плотность мощности позволяет судить о частотных свойствах случайного процесса. Она характеризует его интенсивность при различных частотах или, иначе, среднюю мощность, приходящуюся на единицу полосы частот.

Картину распределения средней мощности по частотам называют спектром мощности. Прибор, при помощи которого измеряется спектр мощности, называется анализатором спектра. Найденный в результате измерений спектр называется аппаратным спектром.

Работа анализатора спектра основана на следующих методах измерений:

· методе фильтрации;

· методе преобразования по теореме Винера-Хинчена;

· методе Фурье-преобразования;

· методе с использованием знаковых функций;

· методе аппаратного применения ортогональных функций.

Особенность измерения спектра мощности состоит в значительной продолжительности эксперимента. Нередко она превышает длительность существования реализации, или время, в течение которого сохраняется стационарность исследуемого процесса. Оценки спектра мощности, получаемые по одной реализации стационарного эргодического процесса, не всегда приемлемы. Часто приходится выполнять многочисленные измерения, так как необходимо усреднение реализаций как по времени, так и по ансамблю. Во многих случаях реализации исследуемых случайных процессов предварительно запоминают, что позволяет многократно повторять эксперимент с изменением продолжительности анализа, использованием различных алгоритмов обработки и аппаратуры.

В случае предварительной записи реализаций случайного процесса аппаратурные погрешности могут быть уменьшены до значений, обусловленных конечной длительностью реализации и нестационарностью.

Запоминание анализируемых реализаций позволяет ускорить аппаратурный анализ и автоматизировать его.

Случайные величины

Случайная величина описывается вероятностными законами. Вероятность того, что непрерывная величина х при измерении попадет в какой-либо интервал х 1 <х <х 2 , определяется выражением:

, где p(x) - плотность вероятности, причем . Для дискретной случайной величины х i P(x = x i)=P i , где P i - вероятность, соответствующая i-у уровню величины х.

Лекция 7.

СПЕКТРАЛЬНАЯ ПЛОТНОСТЬ МОЩНОСТИ СЛУЧАЙНОГО ПРОЦЕССА

Подразумевая под случайным процессом множество (ансамбль) реализаций, необходимо иметь в виду, что реализациям, обладающим различной формой, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности по всем реализациям приводит к нулевому спектру процесса (при среднем = 0) из-за случайности и независимости фаз спектральных составляющих в различных реализациях. Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной величины, поскольку величина среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией x(t) подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте ω . Введенную таким образом спектральную плотность S (ω) в дальнейшем будем называть энергетическим спектром функции x (t ) . Смысл такого названия определяется размерностью функции S (ω) , являющейся отношением мощности к полосе частот:

[S (ω) ] = [ мощность/ полоса частот ] = [мощность×время] = [энергия],

Энергетический спектр можно найти, если известен механизм образования случайного процесса. Здесь же мы ограничимся некоторыми определениями общего характера.

Методы вычисления СПМ

Функции спектральной плотности можно определять тремя различными эквивалентными способами, которые мы рассмотрим ниже:

С помощью ковариационных функций;

С помощью финитного преобразования Фурье;

С помощью фильтрации, возведения в квадрат и усреднения.

Определение спектров с помощью корреляционных функций.

Исторически первый способ определения спектральной плотности появился в математике. Он состоит во взятии преобразования Фурье от предварительно вычисленной корреляционной функции. После вычитания средних значений такие (бесконечные) преобразования Фурье обычно существуют, даже если (бесконечное) преобразование Фурье исходного процесса не существует. Этот подход дает двустороннюю спектральную плотность, определенную для частот f от - до + и обозначаемую S (f ) .

Пусть существуют корреляционные и взаимная корреляционная функции R x (t ), R y (t ) и R xy (t ) . Предположим также, что конечны интегралы от их абсолютных величин

R ( d

На практике эти условия всегда выполняются для реализаций конечной длины. Тогда ПФ функций R (t ) существуют и определяются формулами

S x (f)=

S y (f)=(1)

S xy (f)=

Такие интегралы по конечным реализациям существуют всегда. Функции S x (f ) и S y (f ) называют функциями спектральной плотности процессов x (t ) и y (t ) соответственно или просто спектральными плотностями, а функцию называют взаимной спектральной плотностью двух процессов x (t ) и y (t ) .

Обратные ПФ от формул (1) дают

R x (τ ) =

R y (τ ) = (2)

R xy (τ ) = df .

Соотношения (1) и (2) называют формулами Винера-Хинчина, которые в 30-е годы независимо установили связь между корреляционными функциями и спектральной плотностью через ПФ. При решении практических задач приходится допускать в R (t ) и S (f ) наличие дельта-функций.

Из свойств симметрии стационарных ковариационных функций следует

S x (-f) = S x (f) a S xy (-f) = S yx (f)


Следовательно, спектральная плотность S x (f ) – действительная четная функция, a S xy (f ) – комплексная функция от f .

Тогда спектральные соотношения из (1) можно преобразовать к виду

Оценка спектральной плотности мощности представляет известную проблему для случайных процессов. Примерами случайных процессов может служить шум, а также сигналы, несущие информацию. Обычно требуется найти статистически устойчивую оценку. Анализ сигналов подробно рассматривается в курсе «Цифровая обработка сигналов» . Начальные сведения изложены в .

Для сигналов с известными статистическими характеристиками спектральный состав может быть определен по конечному интервалу этого сигнала. При неизвестности статистических характеристик сигнала по отрезку сигнала можно получить только оценку его спектра. Разные методы использую различные допущения, и поэтому дают различные оценки.

При выборе оценки исходят из того, что в общем случае анализируемый сигнал представляет собой случайный процесс. И требуется выбрать несмещенную оценку, обладающую малой дисперсией, позволяющую усреднить спектр сигнала. Смещением называют разницу между средним значением оценки и истинным значением величины. Несмещенной оценкой называют оценку с нулевым смещением. Оценка с малой дисперсией хорошо локализует искомые величины, т.е. плотность вероятности сконцентрирована около среднего значения. Желательно иметь состоятельную оценку, т.е. оценку, которая при увеличении размера выборки стремится к истинному значению (смещение и дисперсия стремятся к нулю). Различают оценки параметрические, использующие только информацию о самом сигнале и непараметрические, использующие статистическую модель случайного сигнала, и осуществляющие подбор параметров этой модели.

При оценках случайных процессов распространено использование корреляционных функций.

Для эргодичного процесса возможно определение статистических параметров процесса путем усреднения по одной реализации.

Для стационарного случайного процесса корреляционная функция R x (t) зависит от интервала времени, для которого она определяется. Эта величина характеризует связь между значениями x(t), разделенными промежутком t. Чем медленнее убывает R(t), тем больше промежуток, в течение которого наблюдается статистическая связь между значениями случайного процесса.

где - математическое ожидание x(t).

Соотношение между корреляционной функцией R(t) и спектральной плотностью мощности W(w) для случайного процесса определяется теоремой Винера-Хинчина

Для дискретных процессов теорема Винера-Хинчина устанавливает связь между спектром дискретного случайного процесса W(w) и его корреляционной функции R x (n)

W(w)= R x (n)·exp(-j·w·n·T)

Для оценки энергии сигнала во временной и частотной областях используется равенство Парсеваля



Одним из распространенных способов получения оценки спектральной плотности является применение метода периодограмм.

Периодограмма (Periodogram) .В этом методе производится дискретное преобразование Фурье для сигнала x(n), заданного в дискретных точках выборки длиной N отсчетов и его статистическое усреднение. Фактическое вычисление спектра X(k), выполняется только в конечном количестве частотных точек N. Применяется быстрое преобразование Фурье (FFT). Вычисляется спектральная плотность мощности, приходящаяся на один отсчет выборки:

P xx (X k)=|X(k)| 2 /N, X(k)= , k=0,1,…,N-1.

Для получения статистически устойчивой оценки, имеющиеся данные разбивают на перекрывающиеся выборки, с последующим усреднением спектров, полученных по каждой выборке. Задается число отсчетов на выборку N и сдвиг начала каждой последующей выборки относительно начала предыдущей N t . Чем меньше число отсчетов в выборке, тем больше выборок и меньшая дисперсия у оценок. Но поскольку длина выборки N связана с частотным разрешением (2.4), то уменьшение длины выборки ведет к уменьшению частотного разрешения.

Таким образом, сигнал просматривается через окно, а данные, не попадающие в окно, принимаются равными нулю. Конечный сигнал x(n) состоящий из N отсчетов, обычно представляют как результат умножения бесконечного по времени сигнала (n) на прямоугольное окно с конечной длиной w R (n):

x(n) = (n) ∙w R (n),

а непрерывный спектр X N (f) наблюдаемых сигналов x(n) определится как свертка Фурье-образов X(f), W R (f) бесконечного по времени сигнала (n) ∙и окна w R (n)



X N (f)=X(f)*W R (f)=

Спектр непрерывного прямоугольного окна (rect) имеет форму интегрального синуса sinc(x)=sin(x)/x. Он содержит главный «лепесток» и несколько боковых, из которых самый большой приблизительно на 13 dB ниже основного пика (см. рис.15).

Фурье-образ (спектр) дискретной последовательности, получаемой N-точечной дискретизацией непрерывного прямоугольного окна, показан на рис.32. Он может быть вычислен суммированием смещенных интегральных синусов (2.9), в результате получается ядро Дирихле

Рис. 32. Спектр дискретного прямоугольного окна

В то время как сигнал с бесконечной длиной сконцентрирует его мощность точно в дискретной частоте f k , прямоугольная выборка сигнала имеет распределенный спектр мощности. Чем короче выборка, тем более распределенный спектр.

При спектральном анализе производится взвешивание данных с помощью оконных функций, чем добиваются уменьшения влияния боковых «лепестков» на спектральные оценки.

Чтобы обнаружить две гармоники f 1 и f 2 с близкими частотами, необходимо, чтобы для временного окна T ширина главного «лепестка» Df -3 ≈ Df L =0 =1/Т, определяемая на значении -3дБ, была меньше разности искомых частот

Df=f 1 -f 2 > Df -3

Ширина временного окна Т связана с частотой дискретизацией f s и числом отсчетов выборки формулой (2.4).

Инструментальные средства гармонического анализа . Для исследования сигналов очень удобно применение пакета MATLAB, в частности, его приложения (Toolbox) Signal Processing.

Модифицированные периодограммы используют непрямоугольные оконные функции, уменьшающие эффект Гиббса. Примером может служить использование окна Хэмминга (Hamming). Но при этом одновременно происходит примерно вдвое увеличение ширины главного лепестка спектрограммы. Несколько более оптимизировано окно Кайзера (Kaiser). Увеличение ширины главных лепестков при создании фильтров нижних частот ведет к увеличению переходной полосы (между полосами пропускания и задержания).

Оценочная функция Уэлча (Welch) . Метод состоит из деления последовательных данных времени в сегменты (возможно с перекрытием), далее обрабатывается каждый сегмент, а затем оценивают спектр путем усреднения результатов обработки сегментов. Для улучшения оценки могут использоваться непрямоугольные оконные функции, например окно Хэмминга. Увеличение числа сегментов уменьшает дисперсию, но при этом уменьшается разрешение метода по частоте. Метод дает неплохие результаты при малом превышении полезного сигнала над шумом и достаточно часто используется на практике.

На рис.33 приведены оценки гармонического состава для данных, содержащих узкополосые полезные сигналы и белый шум, при различных выборках (N=100, N=67), и использовании различных методов.

Рис. 33. Оценка гармоник сигнала для 1024 точечного FFT-преобразования

Параметрические методы используют авторегрессионные модели (AR). В методах строятся модели фильтров и с их помощью оценивают спектры сигналов. Все методы при наличии шума в сигнале дают смещенные оценки. Предназначены методы для обработки сигналов имеющих гармонические составляющие на фоне шума. Порядок метода (фильтра) задается в два раза больше, чем число гармоник, присутствующих в сигнале. Предложено несколько параметрических методов .

Метод Берга (Burg) дает высокую разрешающую способность по частоте для коротких выборок. При большом порядке фильтра спектральные пики расщепляются. Положение спектральных пиков зависит от начальных фаз гармонических.

Ковариационный (covariance) метод позволяет оценить спектр сигнала, содержащего сумму гармонических компонентов.

Метод Юла-Уоркера (Yule-Walker) дает хорошие результаты на длинных выборках и не рекомендуется для коротких выборок.

Корреляционные методы . Методы MISIC (Multiple Signal Classification) и EV (eigenvectors) выдают результаты в форме псевдоспектра. В основе методов лежит анализ векторов корреляционной матрицы сигнала. Эти методы дают несколько лучшее разрешение по частоте, чем автокорреляционные методы.



 


Читайте:



Используем малоизвестные функции Google, чтобы найти сокрытое Имеет inurl index php board

Используем малоизвестные функции Google, чтобы найти сокрытое Имеет inurl index php board

Получение частных данных не всегда означает взлом - иногда они опубликованы в общем доступе. Знание настроек Google и немного смекалки позволят...

Как узнать разрядность операционной системы

Как узнать разрядность операционной системы

Разрядность центрального процессора – это количество бит, которое ЦП способен обработать за один так. Ранее в ходу были 8 и 16 битные модели,...

Стоит ли сейчас инвестировать в криптовалюты, или уже поздно?

Стоит ли сейчас инвестировать в криптовалюты, или уже поздно?

Вы знаете, во многих журналах на первой странице часто встречается «Слово главного редактора», обычно это какие-то сопли, которые невозможно...

IPhone SE или Samsung Galaxy A3 (2017)

IPhone SE или Samsung Galaxy A3 (2017)

Оба телефона в названии – флагманы, которые в свое время были лучшими в линейке. Сегодня уже в продаже есть Galaxy S8 и iPhone 7, поэтому...

feed-image RSS