Главная - Мобильные уст-ва
Принципы джона фон нейман. поколения эвм

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В дальнейшем на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

По сути, Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципиально новое.

Принцип программного управления: программа состоит из набора команд, выполняющихся процессором определённой последовательности.

Принцип однородности памяти: программы и данные хранятся в одной и той же памяти.

Принцип адресности: структурно основная память состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка.

Компьютеры, построенные на перечисленных принципах, относятся к типу фон – неймановских.

Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. Для сравнения, программа компьютера ENIAC (где не было хранимой в памяти программы) определялась специальными перемычками на панели. Чтобы перепрограммировать машину (установить перемычки по-другому) мог потребоваться далеко не один день. И хотя программы для современных компьютеров могут писаться годы, однако они работают на миллионах компьютеров, установка программ не требует значительных временных затрат.

Помимо перечисленных трёх принципов фон Нейман предложил принцип двоичного кодирования - для представления данных и команд используется двоичная система счисления (первые машины использовали десятичную систему счисления). Но последующие разработки показали, возможность использования нетрадиционных систем счисления.

В начале 1956 г. по инициативе академика С.Л. Соболева, заведующего кафедрой вычислительной математики на механико-математическом факультете Московского университета, в вычислительном центре МГУ был учрежден отдел электроники и стал работать семинар с целью создать практичный образец цифровой вычислительной машины, предназначенной для использования в вузах, а также в лабораториях и конструкторских бюро промышленных предприятий. Требовалось разработать малую ЭВМ, простую в освоении и применениях, надежную, недорогую и вместе с тем эффективную в широком спектре задач. Обстоятельное изучение в течение года имевшихся в то время вычислительных машин и технических возможностей их реализации привело к нестандартному решению употребить в создаваемой машине не двоичный, а троичный симметричный код, реализовав уравновешенную систему счисления, которую Д. Кнут двадцать лет спустя назовет быть может, самой изящной и как затем стало известно, достоинства которой были выявлены К. Шенноном в 1950г. В отличие от общепринятого в современных компьютерах двоичного кода с цифрами 0, 1, арифметически неполноценного вследствие невозможности непосредственного представления в нем отрицательных чисел, троичный код с цифрами -1, 0, 1 обеспечивает оптимальное построение арифметики чисел со знаком. Троичная система счисления основана на том же позиционном принципе кодирования чисел, что и принятая в современных компьютерах двоичная система, однако вес i -й позиции (разряда) в ней равен не 2 i , а 3 i . При этом сами разряды не двухзначны (не биты), а трехзначны (триты) - помимо 0 и 1 допускают третье значение, которым в симметричной системе служит -1, благодаря чему единообразно представимы как положительные, так и отрицательные числа. Значение n -тритного целого числа N определяется аналогично значению n -битного:

где а i ∈ {1, 0, -1} - значение цифры i -го разряда.

В апреле 1960 г. были проведены междуведомственные испытания опытного образца вычислительной машины, названной «Сетунь».По результатам этих испытаний “Сетунь” была признана первым действующим образцом универсальной вычислительной машины на безламповых элементах, которому свойственны “высокая производительность, достаточная надежность, малые габариты и простота технического обслуживания”.“Сетунь”, благодаря естественности троичного симметричного кода, оказалась поистине универсальным, несложно программируемым и весьма эффективным вычислительным инструментом, положительно зарекомендовавшим себя, в частности, как техническое средство обучения вычислительной математике более чем в тридцати вузах. А в Военно-воздушной инженерной академии им. Жуковского именно на “Сетуни” была впервые реализована автоматизированная система компьютерного обучения.

В соответствии с принципами фон Неймана компьютер состоит из:

· арифметико-логического устройства - АЛУ (англ. ALU, Arithmetic and Logic Unit), выполняющего арифметические и логические операции; устройства управления -УУ, предназначенного для организации выполнения программ;

· запоминающих устройств (ЗУ) , в т.ч. оперативного запоминающего устройства (ОЗУ – первичная память) и внешнего запоминающего устройства (ВЗУ); в основной памяти хранятся данные и программы; модуль памяти состоит из множества пронумерованных ячеек, в каждую ячейку может быть записано двоичное число, которое интерпретируется либо как команда, либо как данные;

· устройств ввода-вывода, которые служат для передачи данных между компьюте­ром и внешним окружением, состоящим из различных периферийных уст­ройств, в число которых входят вторичная память, коммуникационное обо­рудование и терминалы.

Обеспечивает взаимодействие между процессором (АЛУ и УУ), основной памятью и устройствами ввода – вывода системная шина .

Фон-неймановская архитектура компьютера считается классической, на ней построено большинство компьютеров. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных. Идея хранения компьютерных программ в общей памяти позволяла превратить вычислительные машины в универсальные устройства, которые способны выполнять широкий круг задач. Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.

Подавляющее большинство вычислительных машин на сегодняшний день – фон-Неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины). По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

2.2 Команда, форматы команд

Команда – это описание элементарной операции, которую должен выполнить компьютер.

Структура команды.

Количество разрядов, которые отводятся для записи команды, зависит от аппаратных средств конкретной модели компьютера. В связи с этим, структуру конкретной команды будем рассматривать для общего случая.

В общем случае команда содержит следующую информацию:

Ø код выполняемой операции;

Ø указания по определению операндов или их адресов;

Ø указания по размещению получаемого результата.

Для любой конкретной машины должно быть задано число двоичных разрядов, отводимых в команде для каждого из её адресов и для кода операций, так же как и сами фактические коды операций. Число двоичных разрядов в команде, отведенное при конструировании машины для каждого из её адресов, определяет верхнюю границу числа ячеек памяти машины, имеющих отдельные адреса: если адрес в команде изображается с помощью n двоичных разрядов, то в памяти с быстрой выборкой не может содержаться больше чем 2 n ячеек.

Команды выполняются последовательно, начиная с начального адреса (точки входа) исполняемой программы, адрес каждой следующей команды на единицу больше адреса предыдущей команды, если она не являлась командой перехода.

В современных машинах длина команд переменная (как правило, от двух до четырёх байт), а способы указания адресов переменных весьма разнообразны.

В адресной части команды может быть указан, например:

Операнд;

Адрес операнда;

Адрес адреса операнда (номер байта, начиная с которого расположен адрес операнда) и т.д.

Рассмотрим структуру возможных вариантов нескольких типов команд.

Трёхадресные команды.

Двухадресные команды.

Одноадресные команды.

Безадресные команды.

Рассмотрим бинарную операцию сложения: с = a + b.

Для каждой переменной в памяти определим условные адреса:

Пусть 53 – код операции сложения.

В этом случае структура трёхадресной команды выглядит следующим образом:

· Трёхадресные команды.

Процесс выполнения команды разбивается на следующие этапы:

Из ячейки памяти, адрес которой хранится в счётчике команд, выбирается очередная команда; содержимое счётчика изменяется и теперь содержит адрес следующей по порядку команды;

Выбранная команда передаётся в устройство управления на регистр команд;

Устройство управления расшифровывает адресное поле команды;

По сигналам УУ значения операндов считываются из памяти и записываются в АЛУ на специальные регистры операндов;

УУ расшифровывает код операции и выдаёт в АЛУ сигнал выполнить соответствующую операцию над данными;

Результат операции в данном случае отправляется в память(в одноадресных и двухадресных ЭВМ остаётся в процессоре);

Все предыдущие действия выполняются до достижения команды ОСТАНОВ.

2.3 ЭВМ как автомат

«Электрон­ные цифровые машины с программным управлением представляют собой пример одного из наиболее распространенных в настоящее время типов преобразователей дискретной информации, называемых дискретными или цифровыми автоматами»(Глушков В.М. Синтез цифровых автоматов)

Любая вычислительная машина работает автоматически (будь то большая или малая ЭВМ, персональный компь­ютер или Супер-ЭВМ). В этом смысле вычислительная машина как автомат может быть описана структурной схемой, представленной на рис. 2.1.

В предыдущих параграфах была рассмотрена структурная схема вычислительной машины. Исходя из структурной схемы вычислительной машины и схемы автомата, мы можем сопоставить блоки схемы автомата и элементы структурной схемы ЭВМ.

В качестве исполнительных элементов в автомат включаются:

· арифметико-логическое устройство:

· память;

· устройства ввода-вывода информации.

Управляющим элементом автомата является устройство управления, которое собственно обеспечивает автоматический режим работы. Как уже отмечалось, в современных вычислительных устройствах основным исполнительным элементом является процессор или микропроцессор, который содержит в себе АЛУ, память, устройство управления.

Вспомогательными устройствами автомата могут быть всевозможные дополнительные средства, улучшающие или расширяющие возможности автомата.

Все современные ЭВМ, не смотря на то, что прошло большое колличество времени, работают на принципах предложенных американским математиком Джоном фон Нейманом (1903 - 1957). Также внес значительный вклад в развитие и применение ЭВМ. Был первым кто основал принципы по которым работает ЭВМ:

1. Принцип двоичного кодирования: вся информация в ЭВМ представлена в двоичном виде, сочетание 0 и 1.

2. Принцип однородности памяти: и программы и данные хранятся в одной и той же памяти.поэтому ЭВМ не распознает что хранится в данной ячейке памяти, а там могут располагаться цифры, текст, команда и т. д. Над командами можно совершать те же действия, что и надданными.

3. Принцип адресуемости памяти: схематически ОП (основная память) состоит из пронумерованных ячеек, ЦП (центральный процессор) в любой момент времени доступная любая ячейка памяти. Поэтому возможно присваивать имена блокам памяти для более удобного взаимдействия ОП и ЦП.

4. Принцип последовательного программного управления: программа состоит из совокупности команд, которые выполняются ЦП последовательно друг за другом.

5. Принцип условного перехода: не всегда происходит так, что команды выполняются одна за одной, поэтому возможно присутствие команды условного перехода, которые меняют последовательно выполнения команд в зависимости от значения хранимых данных

. Классификация современных ЭВМ.

Современные ЭВМ подразделяются на встроенные микро­процессоры , микроЭВМ (персональные компьютеры), большие ЭВМ и суперЭВМ - комплекс ЭВМ с несколькими процессорами.

Микропроцессы - процессоры, реализуемые в виде инте­граль­ных элек­трон­ных микросхем . Микропроцессоры могут встраиваться в телефоны, телевизоры и другие приборы, машины и устройства.

На интегральных микросхемах реализуются процессоры и оперативная память всех современных микро-ЭВМ, а также все блоки больших ЭВМ и суперЭВМ, а также всех программируемых устройств.

Производительность микропроцессоров составляет несколько миллионов опе­ра­ций в секунду, а объемы современных блоков оперативной памяти - несколько миллионов байтов.

МикроЭВМ - этополноценные вычислительные машины , имеющие не только процессор и оператив­ную память для обработки данных, но и устройства ввода-вывода и накопления информации.

Персональные ЭВМ - это микроЭВМ , имеющие устройства отображения на электронных экранах, а также устройства ввода-вывода данных в виде клавиатуры, и возможно - устройства подключения к сетям ЭВМ.

Архитектура микро-ЭВМ основанана использованиисистемной магист­рали - устройствасопря­же­ния, к которому подключаются процессоры и блоки опера­тивной памяти, а также все устройства ввода-вывода информации.

Использование магистрали позволяет менять состав и структуру микроЭВМ - добавлять дополнительные устройства ввода-вывода и наращивать функциональные возможности вычислительных машин.

Долговременное хранение информации в современных ЭВМ проводится с использованием электронных, магнитных и оптических носителей - магнит­ных дисков, оптических дисков и блоков флеш-памяти.

Архитектура современных ЭВМ предполагаетобязательноеналичие долговременной памяти, где размещаются файлы, пакеты про­грамм, базы данных и управляющие операционные системы.

Большие ЭВМ - компьютеры высокой производительности с большим объемом внешней памяти. Большие ЭВМ исполь­зуют в качестве серверов сетей ЭВМ и больших хранилищ данных.

Большие ЭВМ используются как основа для организации корпоративных информационных систем , обслуживающих промышленные корпорации и органы государственной власти.

СуперЭВМ - это многопроцессорные ЭВМ со сложной архитектурой, обла­дающие наиболее высокой производительностью и используемые для решения суперсложных вычислительных задач.

Производительность суперЭВМ составляет десятки и сотни тысяч мил­лиардов вычи­сли­тель­ных операций в секунду. При этом в суперЭВМ все более увели­чивается количество процессоров и усложняется архитектура ЭВМ.

Право и ОСО

Урок 9. Магистрально-модульный принцип построения компьютера.

Задание: используя учебный текст ответить на следующие вопросы (записать в тетрадь).

1. Кто был основоположником магистрально-модульного принципа современной архитектуры ПК.

2. Архитектура компьютера – это…

3. Перечислите основные принципы положенные в основу магистрально-модульного построения архитектуры ПК.

4. Из каких частей состоит магистраль?

5. Для чего нужен интерфейс устройств?

6. Что используется для согласования интерфейсов? По какой схеме работает данное согласование (зарисуйте схему)?

7. Как происходит обработка данных на компьютере?

8. Изобразите схематично магистрально-модульный принцип ПК.

9. Магистраль-это …

10. Для чего служат шина управления, шина адреса, шина данных?

12. Что позволяет модульный принцип пользователю ПК? Перечислите основные достоинства модульно-магистрального принципа.

Д/з. Ответить на вопросы, подготовиться к ответу по учебному тексту.

Учебный текст

Магистрально-модульный принцип построения компьютера

Вспомним информацию, полученную на предыдущих занятиях:

Компьютер – это электронное устройство, предназначенное для работы с информацией, а именно введение, обработку, хранение, вывод и передачу информации. Кроме того, ПК представляет собой единое двух сущностей – аппаратной и программной частей.

Архитектура компьютера - это описание его логической организации, ресурсов и принципов функционирования его структурных элементов. Включает основные устройства ЭВМ и структуру связей между ними.

Обычно, описывая архитектуру ЭВМ, особое внимание уделяют тем принципам ее организации, которые характерны для большинства машин, относящихся к описываемому семейству, а также оказывающие влияние на возможности программирования.

В основу архитектуры современных компьютеров положены принципы Джона фон Неймана и магистрально-модульный принцип.

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

По сути, Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципиально новое.

Принципы фон Неймана

1. Использование двоичной системы счисления в вычислительных машинах . Преимущество перед десятичной системой счисления заключается в том, что устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.


2. Программное управление ЭВМ . Работа ЭВМ контролируется программой, состоящей из набора команд. Команды выполняются последовательно друг за другом. Созданием машины с хранимой в памяти программой было положено начало тому, что мы сегодня называем программированием.

3. Память компьютера используется не только для хранения данных, но и программ . При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.

4. Ячейки памяти ЭВМ имеют адреса, которые последовательно пронумерованы . В любой момент можно обратиться к любой ячейке памяти по ее адресу. Этот принцип открыл возможность использовать переменные в программировании.

5. Возможность условного перехода в процессе выполнения программы . Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода.

6. Наличие устройств ввода и вывода информации . Именно эти устройства являются базовыми и достаточными для работы компьютера на пользовательском уровне.

7. Принцип открытой архитектуры – правила построения компьютера, в соответствии с которыми каждый новый блок должен быть совместим со старым и легко устанавливаться в том же месте в компьютере. В компьютере столь же легко можно заменить старые блоки на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но и становится более производительной. Этот принцип позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а также приобретать и устанавливать новые блоки. Причем во всех разъемы для их подключения являются стандартными и не требуют никаких изменений в самой конструкции компьютера.

Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой.

Компьютер не является неделимым, цельным объектом. Он состоит из некоторого количества устройств – модулей. (Комплектовать свой компьютер из этих модулей пользователь может по собственному желанию). Для каждого устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером. некоторые контроллеры могут управлять сразу несколькими устройствами. Все контроллеры и адаптеры взаимодействуют с процессором и оперативной памятью через системную магистраль (набор электронных линий. Шина - это кабель, состоящий из множества проводов.

Магистраль обеспечивает обмен данными между устройствами компьютера.

Магистраль состоит из трех частей:

1. Шина адреса, на которой устанавливается адрес требуемой ячейки памяти или устройства, с которым будет происходить обмен информацией.

2. Шина данных , по которой будет передаваться необходимая информация.

3. Шина управления , регулирующая этот процесс. (по шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Эти сигналы показывают – какую операцию следует производить).

Для того, чтобы компьютер функционировал правильно, необходимо, чтобы все его устройства работали дружно, «понимали» друг друга и «не конфликтовали». Это обеспечивается благодаря одинаковому интерфейсу, который имеют все устройства компьютера.
Интерфейс – это средство сопряжения двух устройств, в котором все физические и логические параметры согласуются между собой.

Так как обмен данными между устройствами происходит через магистраль, то для согласования интерфейсов все внешние устройства подключаются в шине не напрямую, а через свои контроллеры (адаптеры) и порты.

Порты бывают последовательные и параллельные. К последовательным портам присоединяют медленно действующие или удаленные устройства (мышь, модем), а к параллельным более быстрые (сканер, принтер). Клавиатура и монитор подсоединяется к специализированным портам.

Для того, чтобы по ошибке или незнанию не подключить устройство к чужому порту, каждое устройство имеет индивидуальную форму штекера, не подходящую к «чужому» разъему.

Информация, представленная в цифровой форме и обрабатываемая на компьютере, называется данными .

Последовательность команд, которую выполняет компьютер в процессе обработки данных, называется программой .

Обработка данных на компьютере:

1. Пользователь запускает программу, хранящуюся в долговременной памяти, она загружается в оперативную и начинает выполняться.

2. Выполнение: процессор считывает команды и выполняет их. Необходимые данные загружаются в оперативную память из долговременной памяти или вводятся с помощью устройств ввода.

3. Выходные (полученные) данные записываются процессором в оперативную или долговременную память, а также предоставляются пользователю с помощью устройств вывода информации.

Для обеспечения информационного обмена между различными устройствами должна быть предусмотрена какая-то магистраль для перемещения потоков информации.

Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии. К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины данных можно отнести следующие: запись/чтение данных из оперативной памяти, запись/чтение данных из внешней памяти, чтение данных с устройства ввода, пересылка данных на устройство вывода.

Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении - от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса.

Количество адресуемых ячеек памяти можно рассчитать по формуле:

N=2 I , где I – разрядность шины адреса.

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

2 16 = 64 Кб

2 20 = 1 Мб

2 24 = 16 Мб

2 32 = 4 Гб

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Каждая отдельная функция компьютера реализуется одним или несколькими модулями – конструктивно и функционально законченных электронных блоков в стандартном исполнении. Организация структуры компьютера на модульной основе аналогична строительству блочного дома.

Магистрально-модульный принцип имеет ряд достоинств:

1. для работы с внешними устройствами используются те же команды процессора, что и для работы с памятью.

2. подключение к магистрали дополнительных устройств не требует изменений в уже существующих устройствах, процессоре, памяти.

3. меняя состав модулей можно изменять мощность и назначение компьютера в процессе его эксплуатации.

Какие достижения в информатике Джон фон Нейман совершил в ХХ веке, Вы узнаете из этой статьи.

Перед тем, как говорить о его достижениях в информатике, стоит рассказать о первых шагах ученого на пути науки. Его первая работа «К введению трансфинитных ординальных чисел» увидела свет в 1923 году на страницах Сегедского университета, где он обучался. В своей докторской диссертации он разработал систему аксиом . В 1925 году Нейман защитил диссертацию на тему «Аксиоматическое построение теории множеств» в Будапештском университете и получил диплом инженера-химика от цюрихского университета. В 1927 году он стал приват-доцентом Берлинского университета, а через два года и Гамбургского университета. В 1931 году он получил должность профессора в Пристонском университете.

Джон фон Нейман достижения в информатике

В 1943 – 1946 года был построена первая ЭВМ (электро – вычислительная машина), которая была названа ЭНИАК. Джон фон Нейман подсказал ее разработчикам как упростить программирование машины путем ее модификации. А в создании второй машины ЭДВАК – электронного автоматического вычислителя с дискретными переменными он принимал уже активное участие. Ему принадлежит разработка подробной логической схемы машины, в которой вычислительные идеализированные элементы были структурными единицами. Данные идеализированные элементы стали шагом вперед в информатике, так как они позволили отделить логическую схему от технического ее воплощения.

Джон фон Нейман предложил использовать электростатическую запоминающую систему вместо линии задержки как элементы памяти. Новосозданную машину назвали ДЖОНИАК, на честь Неймана.

Научные труды автора – «Об основаниях квантовой механики», «Математическое обоснование квантовой механики», «Теоретико-вероятностное построение квантовой механики», «Термодинамика квантовомеханических систем», «К гильбертовой теории доказательства», «К теории стратегических игр», «Об определении через трансфинитную индукцию и родственных вопросах общей теории множеств», «Об одной проблеме непротиворечивости аксиоматической теории множеств».

Кроме того, что он участвовал в создании компьютера, ученый был первым кто сформулировал принципы работы ЭВМ. Принципы сформулированные Джоном фон Нейманом:

  • Принцип двоичной системы вычисления команд и данных.
  • Принцип программного управления. Программа являет собой набор команд, выполняемых процессором в определенной последовательности.
  • Принцип однородности памяти. Все данные хранятся и кодируются в одной памяти.
  • Принцип адресуемости памяти. Память состоит из нумерованных ячеек, и процессор имеет произвольный доступ к любой из них.
  • Принцип последовательного программного управления. Команды, хранящиеся в памяти, выполняются поочередно после того, как завершилась предыдущая команда.
  • Принцип условного перехода. Он был сформулирован

Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он подключился к созданию первой в мире ламповой ЭВМ ENIAC в 1944 г., когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г. Голдстайном и А. Берксом фон Нейман высказал идею принципиально новой ЭВМ. В 1946 г. ученые изложили свои принципы построения вычислительных машин в ставшей классической статье "Предварительное рассмотрение логической конструкции электронно-вычислительного устройства". С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня.

В статье убедительно обосновывается использование двоичной системы для представления чисел (нелишне напомнить, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде). Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип "хранимой программы". Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней (в то время как собственно расчет не мог продолжаться более нескольких минут - выходили из строя лампы). Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура - устройство ввода, дисплей и печать - устройства вывода.

Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.

Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров "многоярусно" и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ. но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается - определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти. из которой будет извлечена следующая команда программы, указывается специальным устройством - счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название "фон-неймановской архитектуры". Подавляющее большинство вычислительных машин на сегодняшний день - фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

Принципы фон Неймана

Принцип однородности памяти - Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования; то есть одно и то же значение в ячейке памяти может использоваться и как данные, и как команда, и как адрес в зависимости лишь от способа обращения к нему. Это позволяет производить над командами те же операции, что и над числами, и, соответственно, открывает ряд возможностей. Так, циклически изменяя адресную часть команды, можно обеспечить обращение к последовательным элементам массива данных. Такой прием носит название модификации команд и с позиций современного программирования не приветствуется. Более полезным является другое следствие принципа однородности, когда команды одной программы могут быть получены как результат исполнения другой программы. Эта возможность лежит в основе трансляции -- перевода текста программы с языка высокого уровня на язык конкретной вычислительной машины.

Принцип адресности- Структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек -- адреса.

Принцип программного управления- Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов -- команд. Каждая команда предписывает некоторую операцию из набора операций, реализуемых вычислительной машиной. Команды программы хранятся в последовательных ячейках памяти вычислительной машины и выполняются в естественной последовательности, то есть в порядке их положения в программе. При необходимости, с помощью специальных команд, эта последовательность может быть изменена. Решение об изменении порядка выполнения команд программы принимается либо на основании анализа результатов предшествующих вычислений, либо безусловно.

Принцип двоичного кодирования - Согласно этому принципу, вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. Каждый тип информации представляется двоичной последовательностью и имеет свой формат. Последовательность битов в формате, имеющая определенный смысл, называется полем. В числовой информации обычно выделяют поле знака и поле значащих разрядов. В формате команды можно выделить два поля: поле кода операции и поле адресов.



 


Читайте:



Как открыть MDF или MDS файл?

Как открыть MDF или MDS файл?

Наиболее часто встречаемой проблемой, из-за которой пользователи не могут открыть этот файл, является неверно назначенная программа. Чтобы...

Выборка и подсчет строк одним запросом - SQL_CALC_FOUND_ROWS

Выборка и подсчет строк одним запросом - SQL_CALC_FOUND_ROWS

Давайте вспомним, какие сообщения и в каких темах у нас имеются. Для этого можно воспользоваться привычным запросом: А что, если нам надо лишь...

Обзор бесплатной версии AdwCleaner Адв клинер последняя версия

Обзор бесплатной версии AdwCleaner Адв клинер последняя версия

Безусловно, почти каждый пользователь интернета попадал в ситуацию, когда без его ведома, либо по недосмотру, на компьютер, вместе с закачиваемыми...

Лимиты вебмани с формальным аттестатом и начальным и их увеличение

Лимиты вебмани с формальным аттестатом и начальным и их увеличение

WebMoney в нашей стране пользуется заслуженным авторитетом. Это самая распространенная среди фрилансеров и онлайн-шопперов система электронных...

feed-image RSS