Главная - Настройка интернет
Используются для сравнения нескольких величин. Способы сравнения по величине: непосредственные, опосредованные, при помощи глазомера

Ознакомление с величиной является одной из задач сенсорного и умственного воспитания детей дошкольного возраста.

В процессе повседневной жизни, вне специального обучения дети не овладевают общепринятыми способами измерения , они лишь с большей или меньшей степенью успешности пытаются копи­ровать внешние действия взрослых, зачастую не вникая в их зна­чение и содержание.

Исходя из особенностей детских представлений о величине предметов, педагогическая работа строится в определенной после­довательности.

Вначале формируетсяпредставление о величине как прост­ранственном признаке предмета. Детей учат выделять данный признак наряду с другими, пользуясь специальными приемами об­следования : приложением и наложением .

Практически сравнивая (соизмеряя) контрастные и одинаковые по величине предметы, малыши устанавливают отношения «равенства - неравенства».

СРАВНЕНИЕМ называется операция установления сходства и различия между предметами и явлениями реального мира.

Ре­зультаты сравнения отражаются в речи с помощью прилагатель­ных: длиннее, короче, одинаковые (равные по длине), шире, уже, одинаковые (равные по ширине), выше, ниже, одинаковые (рав­ные по высоте), больше, меньше, одинаковые (равные по величи­не) и т. д. Таким образом, первоначально предусматривается лишь попарное сравнение предметов по одному признаку.

На этой основе продолжается дальнейшая работа , в процессе которой детей учат при сравнении нескольких предметов одним из них пользоватьсякак образцом.

Практические приемы приложе­ния и наложения применяются для составления упорядоченного (сериационного) ряда. Затем дети учатся создавать его по правилу . Располагая предметы (3-5 штук) в возрастающем или убывающем порядке по длине, ширине, высоте и другим признакам, они отражают это в речи: самая широкая, уже, еще уже, самая узкая и др.

Задача последующей работы - закрепить умение строить сериационный ряд предметов по длине, ширине, высоте и другим признакам, правильно отражая это в речи, развивать глазомер детей, учить на глаз определять размеры различных предметов, сопоставляя их с величиной известных предметов, а также пользуясь условной меркой.



Таким образом,

- в младшем и среднем дошкольном возрасте дети определяют размеры предметов путем непосредственного их сравнения (приложения или наложения);

В старшем - применяет­ся и опосредованный способ сравнения (оценка размеров воспри­нимаемых предметов в сравнении с хорошо известными, встречаю­щимися в опыте ребенка ранее, измерение условной меркой).

ИЗМЕРЕНИЕ включает в себя две логические операции :

Первая - это процесс разделения , который позволяет ребенку понять, что целое можно раздробить на части;

Вторая - это операция замещения , состоящая в соединении отдельных частей.

Сущность измерения состоит в количественном дроблении измеряемых объектов и установлении величины данного объекта по отношению к принятой мере. Посредством операции измерения устанавливается численное отношение между измеряемой величиной и заранее выбранной единицей измерения, масштабом или эталоном.

Деятельность измерения довольно сложна. Она требует специфических умений, знакомства с системой мер, применения измерительных приборов. Использование условных мер делает доступным измерение детям . Термин «измерение условными мерками» означает возможность использовать средства измерения.

В детском саду ребята овладевают несколькими видами ИЗМЕРЕНИЯ УСЛОВНОЙ МЕРКОЙ .

К первому виду следует отнести линейное измерение , когда дети с помощью полоски бумаги, палочек, веревок, шагов и других условных мерок учатся измерять длину, ширину, высоту различных предметов.

Второй вид измерения - определение с помощью условной мерки объема сыпучих веществ : дети учатся кружкой, стаканом, ложкой и другими емкостями вымерять количество крупы, сахарного песка в пакете.

Третий вид - это измерение условной меркой жидкостей, чтобы узнать, сколько стаканов воды в графине и т. п.

Применение мерок придает точность устанавливаемым в процессе измерения отношениям «равенство - неравенство», «часть - целое», позволяет полнее и глубже выявить их свойства.

Таким образом, в дошкольном образовательном учреждении измерительная деятельность носит элементарный, пропедевтический характер. Ребенок вначале учится измерять объекты условными мерками, и лишь в результате этого создаются предпосылки для овладения «настоящим» измерением.

Ориентировка детей в величине предметов во многом определяется ГЛАЗОМЕРОМ - важнейшей сенсорной способностью. Развитие глазомера непосредственно связано с овладением специальными способами сравнения предметов. Вначале сравнение предметов по длине, ширине, высоте детьми проводится практическим путем наложения и приложения, а затем на основе измерения. Глаз как бы обобщает практические действия руки.

В средней группе большое внимание уделяется развитию глазомера . Детям дают «задания найти из четырех-пяти предметов равный по своим размерам образцу или большего, меньшего размера (найди такой же длины, найди длиннее, короче и т. д.). Чтобы осуществить все задания, предусмотренные программой средней группы, надо провести не менее 10-12 занятий.

Знания и умения, полученные на таких занятиях, необходимо систематически закреплять и применять в других видах деятельности :

· сравнивать размеры разных частей растений,

· подбирать полоски нужных размеров для ремонта книг,

· рисовать, лепить предметы соответствующих размеров,

· наблюдать, как изме­няются размеры строящегося дома, и т.д.

Большое внимание уделяют развитию у детей глазомера. На основе овладения приемами непосредственного сопоставления размера предметов (наложение, приложение, измерение при помощи мерки) дети учатся решать задачи, требующие все более и более, сложных глазомерных действий.

Старшие дошкольники выполняют более сложные, чем в средней группе, задания на развитие глазомера :

· найти на глаз предметы большего или меньшего размера, чем образец;

· подобрать два предмета, чтобы вместе они были равны образцу и др.

Постепенно расширяют и площадь, на которой осуществляется поиск предметов нужного размера.

В качестве образца могут служить разные предметы. В то же время один и тот же образец может использоваться для сравнения предметов и по длине, и по ширине, и т. д. Каждый раз дети проверяют правильность решения глазомерной задачи, пользуясь приемом приложения (вплотную) или измерения меркой. Аналогичные задачи можно ставить перед детьми в разных видах деятельности.

В процессе упражнения детей в построении упорядоченного ряда педагог вводит правило: прикладывать и переставлять предметы нельзя. Каждый следующий элемент среди оставшихся дети находят на глаз.

Можно предлагать и более сложные задачи . Например, выбрать на глаз 2 предмета и составить из них третий, равный образцу; установить соответствие между несколькими (2-3) рядами предметов, упорядоченных по размеру.

Данной работе необходимо уделить внимание не столько на занятиях по математике, сколько в часы игр. Вне занятий используют дидактические игры "Сложи дощечки", "Расставь по порядку", "В какую коробочку?", "Кто первый?" (автор Т. Г. Васильева).

С самых давних пор людей серьезно интересовал вопрос о том, как удобнее всего сравнить величины, выраженные в разных значениях. И дело здесь не только в природной любознательности. Человек древнейших земных цивилизаций придавал этому довольно непростому делу сугубо прикладное значение. Корректно измерить землю, определить вес продукта на рынке, рассчитать необходимое соотношение товаров при бартере, определить верную норму винограда при заготовке вина - вот лишь малая толика задач, которые часто всплывали в и без того нелёгкой жизни наших предков. Поэтому малообразованные и неграмотные люди при необходимости сравнить величины шли за советом к своим более опытным товарищам, а те нередко брали за такую услугу соответствующую мзду, и довольно неплохую, кстати.

Что можно сравнивать

В наше время этому занятию также отводится немалая роль в процессе изучения точных наук. Всем, конечно, известно, что сравнивать необходимо однородные величины, то есть яблоки - с яблоками, а свеклу - со свеклой. Никому и в голову не придет попробовать выразить градусы Цельсия в километрах или килограммы в децибелах, зато длину удава в попугаях мы знаем с самого детства (для тех, кто не помнит: в одном удаве - 38 попугаев). Хотя попугаи тоже бывают разные, и на самом деле длина удава будет различаться в зависимости от подвида попугая, но это уже детали, в которых мы и попробуем разобраться.

Размерности

Когда в задании указано: "Сравни значения величин", необходимо эти самые величины привести к одному знаменателю, то есть выразить в одних и тех же значениях для удобства сравнения. Понятное дело, что сравнить значение, выраженное в килограммах, со значением, выраженным в центнерах или в тоннах, для многих из нас не составит особого труда. Однако существуют однородные величины, выразить которые можно в разных размерностях и, более того, в разных системах измерения. Попробуйте, например, сравнить величины кинематической вязкости и определить, какая из жидкостей является более вязкой в сантистоксах и квадратных метрах в секунду. Не получается? И не получится. Для этого нужно оба значения отразить в одних и тех же величинах, а уже по числовому значению определить, какое из них превосходит соперника.

Система измерения

Для того чтобы понять, какие величины можно сравнивать, попытаемся вспомнить существующие системы измерения. Для оптимизации и ускорения расчетных процессов в 1875 году семнадцатью странами (в том числе Россией, США, Германией и др.) была подписана метрическая конвенция и определена метрическая система мер. Для разработки и закрепления эталонов метра и килограмма был основан Международный комитет мер и весов, а в Париже обустроено Международное бюро мер и весов. Эта система со временем эволюционировала в Международную систему единиц, СИ. В настоящее время эта система принята большинством стран в области технических расчетов, в том числе и теми странами, где традиционно в повседневной жизни используются национальные (например, США и Англия).

СГС

Однако параллельно с общепринятым стандартом эталонов развивалась и другая, менее удобная система СГС (сантиметр-грамм-секунда). Она была предложена в 1832 году немецким физиком Гауссом, а в 1874 году модернизирована Максвеллом и Томпсоном, в основном в области электродинамики. В 1889 году была предложена более удобная система МКС (метр-килограмм-секунда). Сравнение предметов по величине эталонных значений метра и килограмма для инженеров гораздо более удобно, нежели использование их производных (санти-, милли-, деци- и др.). Однако данная концепция также не нашла массовый отклик в сердцах тех, для кого она предназначалась. Во всём мире активно развивалась и использовалась поэтому расчеты в СГС проводили всё реже, а после 1960 года, с введением системы СИ, СГС и вовсе практически вышла из употребления. В настоящее время СГС реально применяют на практике лишь при расчетах в теоретической механике и астрофизике, и то из-за более простого вида записи законов электромагнетизма.

Пошаговая инструкция

Разберём подробно пример. Допустим, задача звучит так: "Сравните величины 25 т и 19570 кг. Какая из величин больше?" Что нужно сделать перво-наперво, это определить, в каких величинах у нас заданы значения. Итак, первая величина у нас задана в тоннах, а вторая - в килограммах. На втором шаге мы проверяем, не пытаются ли нас ввести в заблуждение составители задачи, пытаясь заставить сравнивать разнородные величины. Бывают и такие задания-ловушки, особенно в быстрых тестах, где на ответ к каждому вопросу дается 20-30 секунд. Как мы видим, значения однородны: и в килограммах, и в тоннах у нас измеряется масса и вес тела, поэтому вторая проверка пройдена с положительным результатом. Третий шаг, переводим килограммы в тонны или, наоборот, тонны - в килограммы для удобства сравнения. В первом варианте получается 25 и 19,57 тонн, а во втором: 25 000 и 19 570 килограмм. И вот теперь можно со спокойной душой сравнить величины этих значений. Как наглядно видно, первое значение (25 т) в обоих случаях больше, чем второе (19 570 кг).

Ловушки

Как уже упоминалось выше, современные тесты содержат очень много заданий-обманок. Это необязательно разобранные нами задачи, ловушкой может оказаться довольно безобидный с виду вопрос, особенно такой, где напрашивается вполне логичный ответ. Однако коварство, как правило, кроется в деталях или в маленьком нюансе, которые составители задания пытаются всячески замаскировать. Например, вместо уже знакомого вам по разобранным задачам с постановкой вопроса: "Сравни величины там, где это возможно" - составители теста могут просто попросить вас сравнить указанные величины, а сами величины выбрать поразительно похожие друг на друга. Например, кг*м/с 2 и м/с 2 . В первом случае это сила, действующая на объект (ньютоны), а во втором - ускорение тела, или м/с 2 и м/с, где вас просят сравнить ускорение со скоростью тела, то есть абсолютно разнородные величины.

Сложные сравнения

Однако очень часто в заданиях приводят два значения, выраженные не только в разных единицах измерения и в разных системах исчисления, но и отличные друг от друга по специфике физического смысла. Например, в постановке задачи сказано: "Сравни значения величин динамической и кинематической вязкостей и определи, какая жидкость более вязкая". При этом значения указаны в единицах СИ, то есть в м 2 /с, а динамической - в СГС, то есть в пуазах. Как поступить в этом случае?

Для решения таких задач можно воспользоваться представленной выше инструкцией с небольшим её дополнением. Определяемся, в какой из систем будем работать: пусть это будет общепринятая среди инженеров. Вторым шагом мы также проверяем, а не ловушка ли это? Но в данном примере тоже всё чисто. Мы сравниваем две жидкости по параметру внутреннего трения (вязкости), поэтому обе величины однородны. Третьим шагом переводим из пуазов в паскаль-секунду, то есть в общепринятые единицы системы СИ. Далее переводим кинематическую вязкость в динамическую, умножая её на соответствующее значение плотности жидкости (табличное значение), и сравниваем полученные результаты.

Вне системы

Существуют также внесистемные единицы измерения, то есть единицы, не вошедшие в СИ, но согласно результатам решений созыва Генеральных конференций по мерам и весам (ГКВМ), допустимые для совместного использования с СИ. Сравнивать такие величины между собой можно только при их приведении к общему виду в стандарте СИ. К внесистемным относятся такие единицы, как минута, час, сутки, литр, электрон-вольт, узел, гектар, бар, ангстрем и многие другие.

Параметрические критерии, которые мы рассматривали до сих пор, основаны на том, что сравниваемые выборки можно охарактеризовать двумя параметрами: средним и стандартным отклонением (или какой-то иной мерой изменчивости). А что делать, если распределение в выборках (или, точнее, в той генеральной совокупности, откуда были получены эти выборки) является совсем иным?

Если численность каждой из сравниваемых выборок достаточно велика (больше ста), параметрические критерии можно использовать все равно. Какое бы распределение ни имели эти выборки, их средние "ведут себя" примерно так же, как средние выборок с нормальным распределением. Однако если численность выборок более низкая, следует использовать непараметрические критерии.

Например, непараметрическим аналогом t-критерия Стьюдента является U-критерий Манна-Уитни. Критерий Стьюдента построен на основе распределения, которое описывает отклонения среднего значения выборки определенной численности вокруг генеральной средней нормально распределенной величины . Чем сильнее отклонение от , тем ниже вероятность того, что оно получилось в силу случайности при формировании выборки. А как действовать, если мы ничего не знаем о характере распределения генеральных совокупностей?

Рассмотрим достаточно простой пример, поясняющий, как работает большая группа непараметрических методов, - ранговые критерии . У нас есть две выборки. Расположим их элементы в порядке возрастания: первая - a1, a2, a3, a4, a5; вторая - b1, b2, b3, b4, b5, b6. Составим из элементов этих выборок общий ряд, построенный в порядке возрастания их значений. Сравним три разных случая:
№ 1: a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, b6;
№ 2: a1, a2, a3, a4, b1, a5, b2, b3, b4, b5, b6;
№ 3: b1, a1, b2, a2, b3, a3,b4, b5, a4, a5, b6.

В случае № 1 все элементы одной выборки расположены с одной стороны общего ряда, а все элементы другого ряда - с другой стороны. В случае № 2 одной перестановки (элементов b1 и a5) было бы достаточно, чтобы порядок элементов стал, как в случае № 1. Наконец, в случае № 3 элементы двух выборок перепутаны, и чтобы выстроить их в ряд, где будут сначала стоять одни, а потом - другие, надо сделать 5 перестановок. Нам нужно выбрать между альтернативной гипотезой (согласно которой выборки a и b взяты из разных совокупностей) и нулевой гипотезой (согласно которой эти выборки взяты из одной совокупности). Одинаковы ли вероятности альтернативной и нулевой гипотез для показанных нами трех разных случаев? Нет; альтернативная гипотеза более вероятна в первом случае, а нулевая - в третьем.

Идея рангового непараметрического критерия состоит в том, что мы можем использовать количество необходимых перестановок как меру для оценки нулевой и альтернативной гипотезы. Конкретные величины, которые высчитываются при применении непараметрических критериев, оказываются иными, но логика сравнения примерно соответствует рассмотренному нами примеру.

Итак, благодаря применению остроумных подходов, для параметрических методов сравнения выборок подобраны их непараметрические аналоги (табл. 4.8.1). Чаще всего непараметрические методы обладают меньшей мощностью (т.е. чаще отвергают альтернативную гипотезу в той ситуации, когда она на самом деле верна), но зато позволяют работать с разнообразно распределенными данными и менее чувствительны к малой численности сравниваемых выборок.

Таблица 4.8.1. Непараметрические аналоги параметрических методов

Тип сравнения

Параметрические методы

Непараметрические методы

Сравнение значений величины в двух независимых выборках

t-критерий Стьюдента;
Дисперсионный анализ (ANOVA)

U-критерий Манна-Уитни ;
Критерий серий Вальда-Вольфовица;
Двухвыборочный критерий Колмогорова-Смирнова

Сравнение значений величины в двух зависимых выборках

t-критерий Стьюдента для парных сравнений

Критерий знаков
Критерий Вилкоксона

Сравнение значений величины в нескольких независимых выборках

Дисперсионный анализ (ANOVA)

Ранговый дисперсионный анализ Краскела-Уоллиса ;

Медианный тест

4.9. U-критерий Манна-Уитни

Чтобы рассмотреть применение критерия Манна-Уитни на нашем файле-примере Pelophylax_example.sta нам придется использовать несколько искуственный пример. В качестве примера величины, распределение которой сильно отличается от нормального, мы можем использовать признак, который называется DNA - содержание ДНК на клетку (в пикограммах, пг), измеренное с помощью проточной ДНК-цитометрии.

Рис. 4.9.1. Признак "DNA" имеет распределение, резко отличающееся от нормального

Выясним, отличаются ли по значению этого признака самки и самцы Pelophylax esculentus . Чтобы воспользоваться критерием Манна-Уитни перейдем в меню Statistics / Nonparametrics. Обратите внимание на пиктограммы в меню: они соответствуют тем, которые используются для аналогичных сравнений с помощью t-теста.

Рис. 4.9.2. U-критерий Манна-Уитни вычисляется здесь

В диалоговом окне надо указать зависимую (Dependent) и группирующую (Grouping) переменные; если группирующая переменная имеет более двух значений, надо выбрать те два значения, которым будут соответствовать сравниваемые выборки. Чтобы выбрать только представителей Pelophylax esculentus , воспользуемся окошком Select cases и используем текстово-цифровые обозначения, введенные в пункте 3.1, при описании файла-примера.

Рис. 4.9.3. Установки, выбираемые для описываемого сравнения

Вы можете увидеть, что Statistica вычисляет все три упомянутых в табл. 4.9.1. критерия, которые используются для сравнения двух независимых выборок, но "рекомендует" (запускает с кнопки, расположенной в левом верхнем углу) критерий Манна-Уитни. Вычислим его и убедимся, что отличия между самками и самцами по количеству ДНК, приходящемуся на клетку, статистически незначимы.

Рис. 4.9.4. Результат сравнения по Манну-Уитни

Если нас не интересует односторонний критерий, целесообразно использовать значение p, вычисленное с поправкой (то, которое находится после столбца "Z adjusted, т.е. 0,906780). Эта поправка повыщает мощность критерия в случае выборок, численность которых превышает 20. Так или иначе, никакой сколь-нибудь существенной разницы между самцами и самками не обнаружено.

Использованный нами диалог для сравнения по Манну-Уитни предусматривает возможность построения коробчатых графиков. Поскольку мы используем непараметрический метод, на графике не тражаются параметры выборки (например, ее среднее значение), а используются непараметрические меры - медиана и квартили (значения, "отрезающие" по четвертой части распределения).

Рис. 4.9.5. Графическое сравнение распределений значения признака DNA для самок и самцов Pelophylax esculentus

Может показаться странным, почему первая (от Min до 25%) и последняя (от 75% до Max) четверти настолько уже, чем вторая и третья? Чтобы это понять, построим категоризованную гистограмму.

Рис. 4.9.6. Гистограмма, показывающая распределения значения признака DNA, зарегистрированные для самок и самцов Pelophylax esculentus

Становится понятно, что удивившее нас свойство показанных на предыдущем рисунке распределений является следствием бимодальности рассматриваемого нами признака.

4.10. Критерий знаков для парных сравнений

В нашем файле-примере Pelophylax_example.sta отсутствуют данные, которые требуют сравнения значений двух связанных выборок, поэтому мы создадиим их искусственно. Представим себе, что выборку из 25 лягушек измерили два человека. Их результаты измерений находятся в столбцах First и Second. Размерное распределение в данной выборке изначально было далеким от нормального.

Рис. 4.10.1. Распределение размеров лягушек (в 0,1 мм) по данным измерений, выполненных двумя людьми на одном и том же материале

Тем не менее, для многих из лягушек результаты измерений, сделанных первым и вторым исследователем, отличаются. Наша задача - установить, одинаково ли измеряют длину лягушек два исследователя. Для поиска ответа на этот вопрос воспользуемся критерием знаков.

Рис. 4.10.2. Использование критерия знаков для сравнения результатов измерений, сделанных двумя разными исследователями

Критерий знаков попросту определяет долю случаев, в которых значение из одной выборки больше, чем значение из другой выборки.

Рис. 4.10.3. Отличия статистически значимы!

Мы можем установить, что второй исследователь статистически значимо чаще завышал результаты измерений по сравнению с первым исследователем.

Сравним полученный результат с результатом от использования параметрического метода - t-критерия для парных выборок.

Рис. 4.10.4. Параметрический метод дал тот же результат, но с несколько большей надежностью

Более низкое значение p, определенное с помощью параметрического критерия, вполне согласуется с упомянутым выше фактом, что параметрические методы обладают большей мощностью, чем непараметрические. Но правомочно ли мы использовали параметрический критерий? На самом деле, правомочно. Парные сравнения рассматривают не совокупность значений в первой и второй выборке, а разницу по каждому элементу между первой и второй выборкой. Построим распределение разницы между выборками First и Second.

Рис. 4.10.5. Распределение разницы между измерениями двух исследователей

Можно увидеть, что отклонение распределения разницы между двумя измерениями от нормального является статистически незначимым. Использование параметрического теста было вполне правомочным.

А могли ли мы использовать методы для сравнения независимых выборок? В случае сравнения независимых выборок то, что распределение интересующих нас величин сильно отличается от нормального, оказывается важным. Таким образом, мы должны использовать не t-критерий, а U-критерий. Для того, чтобы использовать U-критерий Манна-Уитни, файл с данными придется перестроить: все измерения должны находиться в одном столбце, а второй столбец станет группирующим.

Рис. 4.10.6. По Манну-Уитни результаты измерений, выполненных двумя разными людьми, не отличаются

Как пояснить такое отличие? Как и во многих других случаях, первое, что нужно сделать в случае какого-то непонимания - надо посмотреть на распределение интересующих нас величин.

Рис. 4.10.7. Распределения результатов измерений, выполненных двумя людьми, практически одинаковы. Но, все-таки, как свидетельствует рис. 4.10.3, для 75% лягушек результаты измерения второго исследователя оказываются большими, чем результаты измерения первого исследователя!

Конечно, полученный результат вполне закономерен. Используя критерий Манна-Уитни вместо критерия знаков (или критерия Вилкоксона), мы утратили важнейшую информацию, характеризующую закономерности изменений рассматриваемой нами величины.

Кстати, использованные нами данные были сгенерированы искусственно. Столбец First был фрагментом из файла Pelophylax_example.sta, куда попали в основном самые мелкие и самые крупные особи, а столбец Second был получен с помощью формулы =Trunc(First-2,4+Rnd(8)). Вам ведь понятно, что и как "делает" эта формула?

4.11. Ранговый дисперсионный анализ Краскела-Уоллиса

До нестоящего времени мы использовали только попарные сравнения выборок. Сейчас мы рассмотрим метод, позволяющий сравнивать друг с другом одновременно несколько выборок. Тест Краскела-Уоллиса является непараметрическим аналогом дисперсионного анализа (ANOVA), который подробно обсуждается в следующем разделе нашего пособия. С вычислительной точки зрения он является многомерным обобщением теста Манна-Уитни. Хотя тест Краскела-Уоллиса в некоторых отношениях и уступает дисперсионному анализу (например, в том, что не позволяет одновременно оценивать действия двух или большего количества факторов), он является мощным инструментом, который оказывается пригодным для решения многих задач.

Покажем действие теста Краскела-Уоллиса на примере нашего файла Pelophylax_example.sta (см. пункт 3.1). Нам надо выяснить, отличаются ли представители разных генотипов по длине внутреннего пяточного бугра статистически значимо. Это вполне осмысленная задача, ведь размер и форма внутреннего пяточного бугра являются важным диагностическим признаком, полезным для определения разных форм зеленых лягушек.

Рис. 4.11.1. Обратите внимание на выделенную пиктограмму, соответствующую сравнению нескольких независимых групп

Естественно, что зависимой переменной является длина пяточного бугра (Ci), а группирующей - генотип.

Рис. 4.11.2. Установки выбраны. Если надо сравнивать не все значения группирующей переменной, следует воспользоваться диалогом, который вызывает кнопка Code

Нажав на кнопку Summary, вы получите результаты сразу двух тестов: непараметрического дисперсионного анализа Краскела-Уоллиса и медианного теста, который основан на методе Пирсона. Использование подробнее обсуждается в одной из следующих глав данного пособия, а здесь достаточно сказать, что этот метод используется для непараметрического сравнения распределений. Если распределения зависимой величины для разных групп, выделенных по значению группирующего признака, оказываются различными, это свидетельствует о том, что группирующая и зависимая переменная связаны. Метод же Краскела-Уолиса, как вы помните, относится к ранговым непараметрическим методам. Эти два метода работают по разным принципам и часто дают достаточно сильно отличающиеся результаты.

Рис. 4.11.3. Оба метода демонстрируют статистически значимое влияние группирующей переменной на зависимую переменную. Метод Краскела-Уоллиса дает p=0,0047, а медианный тест - p=0,0112

Обратите внимание: в силу какого-то непонятного снобизма в некоторых окнах программы Statistica 0 перед десятичным разделителем (при используемых настройках операционной системы - запятой) не ставится.

Нажав на кнопку Multiple comparisons of mean ranks for all groups можно получить результаты попарного сравнения всех групп. Фактически, это эквивалентно выполнению сравнения по Манну-Уитни для всех возможных пар групп. Программа при этом выводит два окна: значения величины z, используемой в вычислениях по Манну-Уитни, и расчитанный для каждой пары уровень статистической значимости различий.

Рис. 4.11.4. Попарные сравнения групп в диалоге теста Краскела-Уоллиса эквивалентны множественным сравнениям с помощью критерия Манна-Уитни

Обратите внимание на то, что при проведении множественных сравнений появляется опасность совершить статистическую ошибку I рода (принять альтернативную гипотезу в то время, когда верна нулевая). Чтобы избежать этой опасности, следует использовать описанную выше поправку на множественные сравнения.

Наконец, кнопка Box & whisker позволяет зримо сравнить распределения разных групп.

Рис. 4.11.5. Сравнение распределений длины пяточного бугра у представителей разных генотипов

Еще одна из "графических" кнопок обсуждаемого диалога позволяет построить категоризованные гистограммы для сравниваемых групп; с точки зрения автора, этот способ вывода результатов является менее наглядным.

Сравнение является универсальным методом познания, и оно используется в экономическом анализе очень часто, как в качестве самостоятельного приема, так и в составе других методов.

Сравнение - это сопоставление изучаемого объекта с уже изученным для нахождения черт сходства либо различий между ними. С помощью сравнения выявляется общее и особенное в экономических явлениях, устанавливаются отличия или изменения в уровне и состоянии исследуемых объектов, изучаются тенденции и закономерности их развития.

С помощью сравнения решаются следующие основные задачи:

Выявление причинно-следственных связей между явлениями;

Проведение доказательств или опровержений;

Классификация и систематизация явлений.

В анализе чаще всего используются следующие разновидности сравнений:

1. Сравнение фактических значений показателей отчетного периода (отчетной даты) с данными прошлых периодов (предыдущих дат). Это дает возможность оценить направление и скорость изменения изучаемых показателей и определить тенденции и закономерности развития экономических процессов. Этот тип сравнений называют временным сравнительным анализом .

2. Сопоставление фактического уровня показателей с плановым . Такое сравнение необходимо для оценки степени выполнения плана, выявления неиспользованных резервов.

3. Сравнение фактических значений показателей с утвержденными нормами и нормативами . Такое сравнение, широко используемое в практике аналитической работы, необходимо для контроля соблюдения установленных нормативов, выявления экономии или перерасхода ресурсов, для оценки степени эффективности их использования и для определения утерянных возможностей.

4. Сравнение уровня показателей изучаемого объекта со значениями показателей других объектов . Например, уровень рентабельности анализируемой фирмы можно сравнить с уровнем рентабельности фирмы-конкурента или с уровнем рентабельности лучшей в данной сфере деятельности фирмы. Сравнения этого типа позволяют выявлять и перенимать положительный опыт; они используются в конкурентной борьбе. Сравнение разных объектов называется пространственным (или межхозяйственным ) сравнительным анализом .

5. Сравнение показателей исследуемой организации со среднеотраслевыми данными . Такое сравнение используется для более полной и объективной оценки уровня развития организации, изучения общих и специфических факторов, определяющих результаты ее хозяйственной деятельности.

6. Сравнение параллельных и динамических рядов показателей. Сравнение этого типа используется в экономическом анализе для определения формы и направления связи между разными показателями. С этой целью значения одного из показателей необходимо расположить в возрастающем или убывающем порядке и посмотреть, как в связи с этим изменяются другие исследуемые показатели: возрастают они или убывают и в какой степени.


7. Сравнение разных вариантов планов, проектов, управленческих решений для выбора оптимального варианта.

8. Сравнение значений показателей до и после реализации плана , проекта, управленческого решения для оценки их качества.

Описанные в предыдущей главе горизонтальный, вертикальный и трендовый анализ также являются по своей сути сравнениями. Горизонтальный и трендовый анализ - это временной сравнительный анализ, а вертикальный анализ - это сравнение части и целого, сравнение отдельных частных показателей с итоговым с целью выявления вклада этих показателей в общий итог.

Сравнение двух и более значений одного и того же показателя называется одномерным . Таковым является, например, сравнение курса ценной бумаги на разные даты. При наличии шкалы такое сравнение не вызывает затруднений: все сравниваемые значения можно проранжировать в порядке возрастания, определить лучшее и худшее значения и т. д.

Сравнение двух и более значений двух и большего количества показателей называется многомерным . По результатам такого сравнения бывает трудно сделать однозначный вывод. Например, необходимо сравнить два предприятия и выявить, какое из них лучше, по двум показателям: по рентабельности и по производительности труда. Если рентабельность выше у первого предприятия, а производительность труда лучше на втором, непонятно, как же определить лучшее из них.

Чтобы избежать неоднозначности выводов, многомерное сравнение нужно свести к одномерному. Для этого используются специальные методы, называемые методами расчета комплексной оценки . Суть этих методов - в замене нескольких показателей, по которым проводится сравнение, одним показателем (комплексной оценкой).

Коэффициентный метод (метод расчета относительных величин)

В экономическом анализе очень широко применяется так называемый коэффициентный метод. Коэффициент - это относительный показатель, безразмерная величина, он является результатом деления одного абсолютного показателя на другой. Абсолютные показатели в экономике чаще всего являются результатом учета (бухгалтерского, статистического и т. д.). Путем деления одного абсолютного показателя на другой можно сопоставить их величины, определить долю одного показателя в другом, определить расход ресурса на каждую единицу получаемого экономического результата и т. д.

Название «коэффициентный метод» не совсем точное, так как на самом деле в его рамках рассчитываются не только коэффициенты , но и другие относительные величины: процентные соотношения , индексы и такие размерные величины , как фондоотдача, производительность труда и пр. Более точное название метода - «метод расчета относительных величин».

Выше перечислены разновидности относительных величин по форме . По содержанию различают относительные величины динамики, уровня выполнения плана, структуры, координации, интенсивности и эффективности .

Динамику, то есть изменение показателей во времени, характеризуют относительные величины динамики : индексы, темпы роста и прироста. Например, индекс инфляции характеризует уровень покупательной способности денег в один момент времени по отношению к другому. Методы расчета и использование показателей динамики подробно будут описаны ниже, в разделе о методах экономической статистики.

Относительная величина уровня выполнения плана рассчитывается как отношение фактического значения показателя к запланированному и, таким образом, характеризует уровень выполнения плана по какому-либо показателю (назовем его П). Как правило, такая величина выражается в процентах:

Относительные величины структуры используются, чтобы рассчитать вклад какого-либо частного показателя в общий итог, оценить значимость отдельных составляющих по отношению ко всему объекту. Например, коэффициент мобильности характеризует долю оборотных активов в общей сумме активов организации (которые, как известно, складываются из оборотных и внеоборотных активов):

Кроме долей, структуру можно характеризовать показателями удельного веса (они выражаются в процентах).

Относительные величины координации характеризуют соотношение между двумя частными показателями, входящими в общий итог. Они позволяют определить, во сколько раз один показатель больше или меньше другого, или установить равенство между ними. Например, коэффициент финансового риска представляет собой соотношение между величинами заемного и собственного капитала организации и характеризует, во сколько раз заемный капитал больше собственного:

Относительные величины интенсивности применяются, в основном, для макроэкономического анализа. Они характеризуют степень распространенности какого-либо явления или уровень развития какого-либо процесса. Это, например, такие показатели, как уровень смертности, безработицы или заболеваемости гриппом. Эти показатели рассчитываются в человеках на 1 тыс. населения.

Относительные величины эффективности наиболее востребованы в экономическом анализе. Они представляют собой отношение величины экономического эффекта к величине (или затратам) ресурса, который был использован для достижения эффекта:

Соответственно, их значение характеризует величину эффекта в пересчете на единицу ресурса. В качестве экономического эффекта может выступать сумма дохода, объем продукции, сумма прибыли и т. д. Наиболее известны такие показатели эффективности, как показатели рентабельности или показатели отдачи ресурсов (фондоотдача, материалоотдача и т. д.). Например, материалоотдача - это объем продукции, произведенной с каждой единицы затрат материальных ресурсов. Она рассчитывается следующим образом:

Расчет любой относительной величины - это, по сути, сравнение двух абсолютных величин. Таким образом, коэффициентный метод - это развитие метода сравнения.

Из всех типов операторов отношения чаще всего используются операторы сравнения – для определения относительного порядка двух величин.

Меньше (<). Результат оператора < равен true , если первый операнд меньше, чем второй операнд; в противном случае он равен false .

Больше (>). Результат оператора > равен true , если его первый операнд больше, чем второй операнд; в противном случае он равен false .

Меньше или равно (<=). Результатом оператора <= является true , если первый операнд меньше или равен второму операнду; в противном случае результат равен false .

Больше или равно (>=). Результат оператора >= равен true , если его первый операнд больше второго или равен ему; в противном случае он равен false .

Эти операторы позволяют сравнивать операнды любого типа. Однако сравнение может выполняться только для чисел и строк, поэтому операнды, не являющиеся числами или строками, преобразуются. Сравнение и преобразование выполняется следующим образом:

Если оба операнда являются числами или преобразуются в числа, они сравниваются как числа.

Если оба операнда являются строками или преобразуются в строки, они сравниваются как строки.

Если один операнд является строкой или преобразуется в строку, а другой является числом или преобразуется в число, оператор пытается преобразовать строку в число и выполнить численное сравнение. Если строка не представляет собой число, она преобразуется в значение NaN и результатом сравнения становится false .

Если объект может быть преобразован как в число, так и в строку, интерпретатор JavaScript выполняет преобразование в число. Это значит, например, что объекты Date сравниваются как числа, т. е. можно сравнить две даты и определить, какая из них более ранняя.

Если оба операнда не могут быть успешно преобразованы в числа или строки, операторы всегда возвращают false.

Если один из операндов равен или преобразуется в NaN, то результатом оператора сравнения является false.

Имейте в виду, что сравнение строк выполняется строго посимвольно, для числовых значений каждого символа из кодировки Unicode. В некоторых случаях стандарт Unicode допускает кодирование эквивалентных строк с применением различных последовательностей символов, но операторы сравнения в JavaScript не обнаруживают этих различий в кодировках; предполагается, что все строки представлены в нормализованной форме. Обратите внимание: сравнение строк производится с учетом регистра символов, т. е. в кодировке Unicode (по крайней мере, для подмножества ASCII) все прописные буквы «меньше» всех строчных букв. Это правило может приводить к непонятным результатам. Например, согласно оператору < строка "Zoo" меньше строки "aardvark".

При сравнении строк более устойчив метод String.localeCompare(), который также учитывает национальные определения «алфавитного порядка». Для сравнения без учета регистра необходимо сначала преобразовать строки в нижний или верхний регистр с помощью метода String.toLowerCase() или String.toUpperCase().

Операторы <= (меньше или равно) и >= (больше или равно) определяют «равенство» двух значений не при помощи операторов равенства или идентичности. Оператор «меньше или равно» определяется просто как «не больше», а оператор «больше или равно» – как «не меньше». Единственное исключение имеет место, когда один из операндов представляет собой значение NaN (или преобразуется в него); в этом случае все четыре оператора сравнения возвращают false .



 


Читайте:



Программа для обновления страницы браузера

Программа для обновления страницы браузера

Пользователи, активно использующие браузер Google Chrome, часто жалуются на автоматическое обновление страниц (вкладок) внутри браузера при...

Проверяем и полностью очищаем флешку от вирусов

Проверяем и полностью очищаем флешку от вирусов

Каждый носитель информации может стать пристанищем для вредоносного ПО. Как следствие, Вы можете лишиться ценных данных и рискуете заразить другие...

Информация и подключении и отключении опции МТС интернет VIP

Информация и подключении и отключении опции МТС интернет VIP

Безлимитный мобильный интернет без ограничений по скорости и трафику, не подразумевающий никаких скрытых условий, в настоящий момент не...

Суть услуги «Интернет vip» от компании МТС

Суть услуги «Интернет vip» от компании МТС

Не секрет, что интернет на мобильном телефоне – это не только очень удобно, но и необходимо в наше время. Дело в том, что есть такие населенные...

feed-image RSS