Главная - Настройка
Виды сигналов, используемых в системах радиосвязи. Измерение параметров спектра радиосигналов Общие сведения о передаче дискретных сообщений
Контроль толщины эпитаксиального слоя и уровня легирования производят путем непосредственных измерений. Основное требование к методикам кон троля - это скорость измерения и воспроизводимость. В условиях промышленного производства информация о ходе процесса требуется через относительно небольшие интервалы...
(ОСНОВЫ КОНСТРУИРОВАНИЯ И ТЕХНОЛОГИИ ПРОИЗВОДСТВА РАДИОЭЛЕКТРОННЫХ СРЕДСТВ. ИНТЕГРАЛЬНЫЕ СХЕМЫ)
  • ВИДЫ И ИСТОЧНИКИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ ПАРАМЕТРОВ СИГНАЛОВ В АО ПРОЦЕССОРАХ
    Неидеальность входного тракта Нелинейность амплитудной характеристики Нелинейная зависимость между уровнями сигнала на входе и выходе С’ВЧ-тракта является, со всей очевидностью, источником погрешностей в измерении уровня радиосигнала и источником обогащения спектра сигнала. Точность измерения...
    (АКУСТООПТИЧЕСКИЕ ПРОЦЕССОРЫ. АЛГОРИТМЫ И ПОГРЕШНОСТИ ИЗМЕРЕНИЙ)
  • Измерение параметров импульсных сигналов
    При измерении параметров импульсных сигналов особое значение имеет правильное определение вида и параметров фронтов исследуемого импульса. Основными влияющими факторами на правильное воспроизведение импульсного сигнала являются частотные свойства каната вертикального отклонения осциллографа и переходная...
  • Измерение параметров элементов электрических цепей 7Л. Общие сведения о параметрах элементов
    При эксплуатации телекоммуникационных систем часто возникает необходимость оценки параметров элементов электрических цепей рахтичных радиотехнических устройств. Наиболее распространенными пассивными линейными элементами радиоэлектронных устройств, параметры которых приходится измерять, являются резисторы,...
    (ИЗМЕРЕНИЯ В ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМАХ)
  • Спектр электромагнитных излучений техносферы
    Электромагнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Электромагнитное поле в вакууме характеризуется векторами напряженности электрического поля Е и индукции магнитного поля В, которые определяют силы,...
    (Теоретические основы защиты окружающей среды)
  • Появление спектра взаимообусловленных, взаимодополняемых, разноотраслевых инноваций
    Если в XIX в. и первой половине XX в. не возникало сомнений, что технологические инновации, существующие за пределами какой-либо отрасли промышленности, не имеют на нее никакого влияния, то в настоящее время приходится исходить из представления о том, что основное влияние на организацию и всю отрасль...
    (Управление инновациями)
  • Спектр и тембр звука
    Объективной характеристикой звука является спектр. Но мы подойдем к этому понятию, идя от более традиционного и более ясного понятия "тембр". Оно основывается на понятиях сложного звука и резонанса. Голосовые связки человека можно сравнить со струнами. При колебании струны как единого целого...
    (Современный русский литературный язык)
  • Импульсные сигналы зависят от тока. Их применение в электроэнергетике, в основном, определяется системами телеметрического контроля, управле-ния, ремонтной защиты. Импульсные сигналы для передачи энергии не при-меняют. Это связано с их широким энергетическим (частотным) спектром. Они могут быть как периодическими, то есть повторяться через опреде-ленный интервал времени, либо не периодическими. Основное назначение таких сигналов – информационное.

    Основные характеристики импульсных сигналов.

    По принципу обмена информацией различают три вида радиосвязи:

      симплексная радиосвязь;

      дуплексная радиосвязь;

      полудуплексная радиосвязь.

    По типу аппаратуры, используемой в радиоканале связи, различают следующие виды радиосвязи:

      телефонная;

      телеграфная;

      передачи данных;

      факсимильная;

      телевизионная;

      радиовещания.

    По типу используемых радиоканалов связи различают следующие виды радиосвязи:

      поверхностной волной;

      тропосферная;

      ионосферная;

      метеорная;

      космическая;

      радиорелейная.

    Виды документированной радиосвязи:

      телеграфная связь;

      передача данных;

      факсимильная связь.

    Телеграфная связь – для передачи сообщений в виде буквенно-цифрового текста.

    Передача данных для обмена формализованной информацией между человеком и ЭВМ или между ЭВМ.

    Факсимильная связь для передачи электрическими сигналами неподвижных изображений.

    1 – Телекс – для обмена письменной корреспонденцией между организациями и учреждениями с использованием пишущих машинок с электронной памятью;

    2 – Теле (видео) текст – для получения информации из ЭВМ на мониторы;

    3 – Теле (бюро) факс – для получения используются факсимильные аппараты (либо у пользователей, либо на предприятиях).

    В радиосетях широко используются следующие виды сигналов радиосвязи:

    А1 - AT с манипуляцией незатухающими колебаниями;

    А2 - манипуляция тонально-модулируемыми колебаниями

    АЗН - А1 (В1) - ОМ с 50 % несущей

    АЗА - А1 (В1) - ОМ с 10 % несущей

    АЗУ1 - А1 (Bl) - ОМ без несущей

    3. Особенности распространения радиоволн различных диапазонов.

    Распространение радиоволн мириаметрового, километрового и гектометрового диапазонов.

    Для оценки характера распространения радиоволн того или иного диапазона необходимо знать электрические свойства материальных сред, в которых распространяется радиоволна, т.е. знать и ε А земли и атмосферы.

    Закон полного тока в дифференциальной форме гласит, что

    т.е. изменение во времени потока магнитной индукции обуславливает появление тока проводимости и тока смещения.

    Запишем это уравнение с учетом свойств материальной среды:

    λ < 4 м - диэлектрик

    4 м < λ < 400 м – полупроводник

    λ > 400 м – проводник

    Морская вода:

    λ < 3 м - диэлектрик

    3 cм < λ < 3 м – полупроводник

    λ > 3 м – проводник

    Для волны мириаметрового (CВД):

    λ = 10 ÷ 100 км f = 3 ÷ 30 кГц

    и километрового (ДВ):

    λ = 10 ÷ 1 км f = 30 ÷ 300 кГц

    диапазонов поверхность земли по своим электрическим параметрам приближается к идеальному проводнику, а ионосфера имеет наибольшую проводимость и наименьшую диэлектрическую проницаемость, т.е. близка к проводнику.

    RV диапазонов CДВ и ДВ практически не проникают в землю и ионос­феру, отражаясь от их поверхности и могут распространяться по естест­венным радиотрассам на значительные расстояния без существенной потери энергии поверхностными и пространственными волнами.

    Т.к. длина волныСДВ диапазона соизмерима с расстоянием до нижней границы ионосферы, то понятие простой и поверхностной волны теряет смысл.

    Процесс распространения RVрассматривается как происходящий в сферическом волноводе:

    Внутренняя сторона - земля

    Внешняя сторона (ночью - слой Е, днем - слой Д)

    Волноводный процесс характеризуется незначительными потерями энергии.

    Оптимальные RV – 25 ÷ 30 км

    Критические RV (сильное затухание) - 100 км и более.

    Присущи явления: - замирания, радиоэха.

    Замирания (фединги) в результате интерференции RV, прошедших раз­ные пути и имеющие разные фазы в точке приема.

    Если в противофазе в точке приема поверхностная и пространственная волна, то это фединг.

    Если в противофазе в точке приема пространственные волны, то это дальний фединг.

    Радиоэхо - это повторение сигнала в результате последовательного приема волн, отразившихся от ионосферы разное число раз (ближнее ради­оэхо) или пришедших в точку приема без и после огибания земного шара (дальнее радиоэхо).

    Земная поверхность имеет устойчивые свойства , а места измерения условий ионизации ионосферы мало влияют на распространениеRV СДВ диапазона, то величина энергии радиосигнала мало изменяется в течение суток, года и вэкстремальных условиях.

    В диапазоне км волн хорошо выражены и поверхностная и пространствен­ная волны (и днем, и ночью), особенно на волнах λ> 3 км.

    Поверхностные волны при излучении имеют угол возвышения не более 3-4 градусов, а пространственные волны излучаются под большими углами к земной поверхности.

    Критический угол падения RV км диапазона очень мал (днем на слой Д, а ночью на слой Е). Лучи с углами возвышения, близко к 90 ° отражаются от ионосферы.

    Поверхностные волны км диапазона, благодаря хорошей дифракционной способнос­ти, могут обеспечить связь на расстояние до 1000 км и более. Однако с расстоянием эти волны сильно затухают. (На 1000 км поверхностная вол­на по интенсивности меньше пространственной).

    На очень большие расстояния связь осуществляется только прост­ранственной км волной. В области равной интенсивности поверхностной и пространственной волн наблюдается ближний фединг. Условия расп­ространения км волн практически не зависят от сезона, уровня солнечной активности, слабо зависят от времени суток (ночью уровень сигнала боль­ше).

    Прием в км диапазоне редко ухудшается из-за сильных атмосфер­ных помех (гроза).

    При переходе от КМ (ДВ) км к гектометровому диапазону уменьшается проводимость земли и ионосферы. ε земли и приближается к ε атмос­феры.

    Возрастают потери в земле. Волны глубже проникают в ионосферу. На расстоянии в несколько сот км начинают преобладать пространственные волны, т.к. поверхностные поглощаются землей и затухают.

    На расстоянии примерно 50-200 км поверхностные и пространственные волны равны по интенсивности и может проявляться ближний фединг.

    Замирания частые и глубокие.

    С уменьшением λ глубина замираний возрастает при уменьшении дли­тельности запираний.

    Особенно сильные замирания на λ больше 100 м.

    Средняя длительность замираний колеблется от нескольких секунд (1 сек) до нескольких десятков секунд.

    Условия радиосвязи в гектометровом диапазоне (СВ) зависят от сезона и времени суток, т.к. слой Д исчезает, а слой Е – выше, причем в слое Д большое поглощение.

    Дальность связи ночью больше, чем днем.

    Зимой условия приема улучшаются за счет уменьшения электронной плотности ионосферы и ослабляются в атмосферных полях. В городах при­ем сильно зависит от промышленных помех.

    Распространение RV - декаметрового диапазона (КВ).

    При переходе от СВ к КВ потери в земле сильно увеличиваются (зем­ля является несовершенным диэлектриком), в атмосфере (ионосфе­ре)-уменьшается.

    Поверхностные волны на естественных радиотрассах КВ диапазона имеют малое значение (слабая дифракция, сильное поглощение).

    В качестве переносчика сообщений используются высокочастотные электромагнитные колебания (радиоволны) соответствующего диапазона, способные распространяться на большие расстояния.

    Колебание несущей частоты, излучаемое передатчиком, характеризуется: амплитудой, частотой и начальной фазой. В общем случае оно представляется в виде:

    i = I m sin(ω 0 t + Ψ 0) ,

    где: i – мгновенное значение тока несущего колебания;

    I m – амплитуда тока несущего колебания;

    ω 0 – угловая частота несущего колебания;

    Ψ 0 – начальная фаза несущего колебания.

    Первичные сигналы (передаваемое сообщение, преобразованное в электрическую форму), управляющие работой передатчика, могут изменять один из этих параметров.

    Процесс управления параметрами тока высокой частоты с помощью первичного сигнала, называется модуляцией (амплитудной, частотной, фазовой). Для телеграфных видов передач применяется термин «манипуляция».

    В радиосвязи, для передачи информации, применяются радиосигналы:

    радиотелеграфные;

    радиотелефонные;

    фототелеграфные;

    телекодовые;

    сложные виды сигналов.

    Радиотелеграфная связь различается: по способу телеграфирования; по способу манипуляции; по применению телеграфных кодов; по способу использования радиоканала.

    В зависимости от способа и скорости передачи радиотелеграфные связи делятся на ручные и автоматические. При ручной передаче манипуляция осуществляется телеграфным ключом с использованием кода МОРЗЕ. Скорость передачи (при слуховом приеме) составляет 60–100 знаков в минуту.

    При автоматической передаче манипуляция осуществляется электромеханическими устройствами, а прием с помощью печатающих аппаратов. Скорость передачи 900–1200 знаков в минуту.

    По способу использования радиоканала телеграфные передачи подразделяются на одноканальные и многоканальные.

    По способу манипуляции к наиболее распространенным телеграфным сигналам относятся сигналы с амплитудной манипуляцией (АТ – амплитудный телеграф – А1), с частотной манипуляцией (ЧТ и ДЧТ – частотная телеграфия и двойная частотная телеграфия – F1 и F6), с относительной фазовой манипуляцией (ОФТ – фазовая телеграфия – F9).

    По применению телеграфных кодов используются телеграфные системы с кодом МОРЗЕ; стартстопные системы с 5-ти и 6-ти значным кодом и другие.

    Телеграфные сигналы представляют собой последовательность прямоугольных импульсов (посылок) одинаковой или различной длительности. Наименьшая по длительности посылка называется элементарной.

    Основные параметры телеграфных сигналов: скорость телеграфирования (V) ; частота манипуляции (F) ;ширина спектра (2D f) .



    Скорость телеграфирования V равна количеству элементарных посылок, передаваемых за одну секунду, измеряется в бодах. При скорости телеграфирования 1 бод за 1 с передается одна элементарная посылка.

    Частота манипуляции F численно равна половине скорости телеграфирования V и измеряется в герцах: F= V/2 .

    Амплитудно-манипулированный телеграфный сигнал имеет спектр (рис.2.2.1.1), в котором кроме несущей частоты, содержится бесконечное множество частотных составляющих, расположенных по обе стороны от нее, с интервалами равными частоте манипуляции F. На практике для уверенного воспроизведения телеграфного радиосигнала достаточно принять кроме сигнала несущей частоты по три составляющих спектра, расположенных по обе стороны от несущей. Таким образом, ширина спектра амплитудно-манипулированного телеграфного ВЧ сигнала равна 6F. Чем больше частота манипуляции, тем шире спектр ВЧ телеграфного сигнала.

    Рис. 2.2.1.1. Временное и спектральное представление сигнала АТ

    При частотной манипуляции ток в антенне по амплитуде не изменяется, а меняется только частота в соответствии с изменением манипулирующего сигнала. Спектр сигнала ЧТ (ДЧТ) (рис. 2.2.1.2) представляет собой как бы спектр двух (четырех) независимых амплитудно-манипулированных колебаний со своими несущими частотами. Разность между частотой «нажатия» и частотой «отжатия» называется разносом частот, обозначается ∆f и может находиться в пределах 50 – 2000 Гц (чаще всего 400 – 900 Гц). Ширина спектра сигнала ЧТ составляет 2∆f+3F.

    Рис.2.2.1.2. Временное и спектральное представление сигнала ЧТ

    Для повышения пропускной способности радиолинии применяются многоканальные радиотелеграфные системы. В них на одной несущей частоте радиопередатчика, можно передавать одновременно две и более телеграфные программы. Различают системы с частотным уплотнением каналов, с временным разделением каналов и комбинированные системы.

    Простейшей двухканальной системой является система двойного частотного телеграфирования (ДЧТ). Сигналы, манипулированные по частоте в системе ДЧТ передаются путем изменения несущей частоты передатчика вследствие одновременного воздействия на него сигналов двух телеграфных аппаратов. При этом используется то, что сигналы двух аппаратов, работающих одновременно, могут иметь лишь четыре сочетания передаваемых посылок. При таком способе в любой момент времени излучается сигнал одной частоты, соответствующий определенному сочетанию манипулированных напряжений. В приемном устройстве имеется дешифратор, с помощью которого формируются телеграфные посылки постоянного напряжения по двум каналам. Уплотнение по частоте заключается в том, что частоты отдельных каналов размещаются на различных участках общего диапазона частот и все каналы передаются одновременно.

    При временном разделении каналов радиолиния предоставляется каждому телеграфному аппарату последовательно с помощью распределителей (рис.2.2.1.3).

    Рис.2.2.1.3. Многоканальная система с временным разделением каналов

    Для передачи радиотелефонных сообщений применяются в основном амплитудно-модулированные и частотно-модулированные высокочастотные сигналы. Модулирующий НЧ сигнал представляет собой совокупность большого количества сигналов разных частот, расположенных в некоторой полосе. Ширина спектра стандартного НЧ телефонного сигнала, как правило, занимает полосу 0,3–3,4 кГц.

    Министерство общего и профессионального образования Российской Федерации

    УГТУ-УПИ имени С.М. Кирова

    Теоретические основы радиотехники

    АНАЛИЗ РАДИОСИГНАЛОВ И РАСЧЕТ ХАРАКТЕРИСТИК ОПТИМАЛЬНЫХ СОГЛАСОВАННЫХ ФИЛЬТРОВ

    КУРСОВОй ПРОЕКТ

    ЕКАТЕРИНБУРГ 2001 год

    Введение

    Расчёт акф заданного сигнала

    Заключение

    Перечень условных обозначений

    Библиографический список

    Реферат

    Информация ценилась всегда, а с развитием человечества информации становится все больше и больше. Информационные потоки превратились в огромные реки.

    В связи с этим возникло несколько проблем передачи информации.

    Информацию всегда ценили за ее достоверность и полноту поэтому ведется борьба за передачу ее без потерь и искажения. С еще одной проблемой при выборе оптимального сигнала.

    Все это переносится и на радиотехнику где разрабатываются приемные передающее и обрабатывающие эти сигналы. Скорость и сложность предаваемых сигналов постоянно усложняется оборудование.

    Для получения и закрепления знаний по обработке простейших сигналов в учебном курсе есть практическое задание.

    В данной курсовой работе рассматривается прямоугольная когерентная пачка, состоящая из N трапецеидальных (длительность вершины равна одной третьей длительности основания) радиоимпульсов, где:

    а) несущая частота,1,11МГц

    б) длительность импульса (длительность основания),15мкс

    в) частота следования,11.2 кГц

    г) число импульсов в пачке,9

    Для заданного типа сигнала необходимо произвести (привести):

    Расчёт АКФ

    Расчет спектра амплитуд и энергетического спектра

    Расчет импульсной характеристики, согласованного фильтра

    Спектральная плотность - есть коэффициент пропорциональности между длиной малого интервала частот D f и отвечающей ему комплексной амплитудой гармонического сигнала D A с частотой f 0.

    Спектральное представление сигналов открывает прямой путь к анализу прохождению сигналов через широкий класс радиотехнических цепей, устройств и систем.

    Энергетический спектр полезен для получения различных инженерных оценок, устанавливающих реальную ширину спектра того или иного сигнала. Для количественного определения степени отличия сигнала U (t) и его смещенной во времени копии U (t- t) принято вводить АКФ.

    Зафиксируем произвольный момент времени и постараемся так выбрать функцию , чтобы величина достигала максимально возможного значения. Если такая функция действительно существует, то отвечающий ей линейный фильтр называют согласованным фильтром.

    Введение

    Курсовая работа по заключительной части предмета "Теория радиотехнических сигналов и цепей" охватывает разделы курса, посвященного основам теории сигналов и их оптимальной линейной фильтрации.

    Целями работы являются:

    изучение временных и спектральных характеристик импульсных радиосигналов, применяемых в радиолокации, радионавигации, радио телеметрии и смежных областях;

    приобретение навыков по расчету и анализу корреляционных и спектральных характеристик детерминированных сигналов (автокорреляционных функций, спектров амплитуд и энергетических спектров).

    В курсовой работе для заданного типа сигнала необходимо произвести:

    Расчет АКФ.

    Расчет спектра амплитуд и энергетического спектра.

    Импульсной характеристики согласованного фильтра.

    В данной курсовой работе рассматривается прямоугольная когерентная пачка трапецеидальных радиоимпульсов.

    Параметры сигнала:

    несущая частота (частота радиозаполнения),1,11 МГц

    длительность импульсов, (длительность основания) 15 мкс

    частота следования,11,2 кГц

    число импульсов в пачке,9

    Автокорреляционная функция (АКФ) сигнала U (t) служит для количественного определения степени отличия сигнала U (t) и его смещённой во времени копии (0.1) и при t = 0 АКФ становится равной энергии сигнала. АКФ обладает простейшими свойствами:

    свойство чётности:

    Т.е. K U (t ) =K U (- t ).

    при любом значении временного сдвига t модуль АКФ не превосходитэнергии сигнала: ½K U (t ) ½£K U (0 ), что вытекает из неравенства Коши - Буняковского.

    Итак, АКФ представляется симметричной кривой с центральным максимумом, который всегда положителен, а в нашем случае АКФ имеет ещё и колебательный характер. Необходимо отметить, что АКФ имеет связь с энергетическим спектром сигнала: ; (0.2) где ½G (w ) ½ квадрат модуля спектральной плотности. Поэтому можно оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Чем шире полоса частот сигнала, тем уже основной лепесток автокорреляционной функции и тем совершеннее сигнал с точки зрения возможности точного измерения момента его начала.

    Часто удобнее вначале получить автокорреляционую функцию, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Энергетический спектр - представляет собой зависимость ½G (w ) ½ от частоты.

    Согласованные же с сигналом фильтры обладают следующими свойствами:

    Сигнал на выходе согласованного фильтра и функция корреляции выходного шума имеют вид автокорреляционной функции полезного входного сигнала.

    Среди всех линейных фильтров согласованный фильтр даёт на выходе максимальное отношение пикового значения сигнала к среднеквадратичному значению шума.

    Расчёт акф заданного сигнала

    Рис.1. Прямоугольная когерентная пачка трапецеидальных радиоимпульсов

    В нашем случае сигнал представляет собой прямоугольную пачку трапецеидальных (длительность вершины равна одной третьей длительности основания) радиоимпульсов (см. рис 1) в которой число импульсов N=9, а длительность импульса T i =15 мкс.

    Рис.2. Сдвиг копии огибающей сигнала

    S3(t)
    S2(t)
    S1(t)
    Период следования импульсов в пачке T ip » 89,286 мкс., поэтому скважность q = T ip /T i = 5,952. Для расчёта АКФ воспользуемся формулой (0.1) и графическим представлением смещённой по времени копии сигнала на примере одного трапецеидального импульса (огибающей). Для этого обратимся к рисунку 2. Для расчёта главного лепестка АКФ огибающей сигнала (трапеции) рассмотрим три промежутка:

    Для величины сдвига T принадлежащего промежутку от нуля до одной третьей длительности импульса необходимо решить интеграл:

    Решая этот интеграл, получаем выражение для главного лепестка АКФ данного сдвига копии огибающей сигнала:

    Для T принадлежащего промежутку от одной третьей до двух третьих длительности импульса получаем следующий интеграл:

    Решая его, получаем:

    Для Т, принадлежащего промежутку от двух третьих длительности импульса до длительности импульса интеграл, имеет вид:

    Поэтому в результате решения имеем:

    С учётом свойства симметрии (чётности) АКФ (смотрите введение) и соотношения, связывающего АКФ радиосигнала и АКФ его комплексной огибающей: имеем функции для главного лепестка АКФ огибающей ko (T) радиоимпульса и АКФ радиоимпульса Ks (T):

    в которых, входящие функции, имеют вид:

    Таким образом, на рисунке 3 изображён главный лепесток АКФ радиоимпульса и его огибающей, т.е. когда в результате сдвига копии сигнала, когда участвуют все 9 импульсов пачки, т.е. N = 9.

    Видно, что АКФ радиоимпульса имеет колебательный характер, но в центре обязательно максимум. При дальнейшем сдвиге число пересекающихся импульсов сигнала и его копии будет уменьшаться на единицу, а, следовательно, и амплитуда через каждый период следования T ip = 89,286 мкс.

    Поэтому, окончательно АКФ будут иметь вид как на рисунке 4 ( 16 лепестков, отличающихся от главного только амплитудами) с учётом того, что на этом рисунке Т=T ip .:

    Рис. 3. АКФ главного лепестка радиоимпульса и его огибающей

    Рис. 4. АКФ Прямоугольной когерентной пачки трапецеидальных радиоимпульсов

    Рис. 5. Огибающая пачки радиоимпульсов.

    Расчёт спектральной плотности и энергетического спектра

    Для расчёта спектральной плотности воспользуемся, как и при расчётах АКФ, функциями огибающей радиосигнала (смотрите рис.2), которые имеют вид:

    и преобразованием Фурье для получения спектральных функций, которые с учётом пределов интегрирования для n-го импульса будут рассчитываться по формулам:

    для огибающей радиоимпульса и:

    для радиоимпульса соответственно.

    График этой функции представлен на (рис.5).

    на рисунке для наглядности рассмотрен разный частотный диапазон

    Рис. 6. Спектральная плотность огибающей радиосигнала.

    Как и ожидалось, главный максимум расположен в центре, т.е. при частоте w =0.

    Энергетический же спектр равен квадрату спектральной плотности и поэтому график спектра имеет вид как на (рис 6) т.е. очень похож на график спектральной плотности:

    Рис. 7. Энергетический спектр огибающей радиосигнала.

    Вид спектральной плотности для радиосигнала будет иной, поскольку вместо одного максимума при w = 0 будет наблюдаться два максимума при w = ±wо, т.е. спектр видеоимпульса (огибающей радиосигнала) переносится в область высоких частот с уменьшением вдвое абсолютного значения максимумов (см. рис.7). Вид энергетического же спектра радиосигнала будет так же очень похож на вид спектральной плотности радиосигнала, т.е. тоже будет осуществлён перенос спектра в область высоких частот и так же будет наблюдаться два максимума (см. рис.8).

    Рис. 8. Спектральная плотность пачки радиоимпульсов.

    Расчёт импульсной реакции и рекомендации к построению согласованного фильтра

    Как известно, наряду с полезным сигналом, зачастую присутствуют шумы и поэтому при слабом полезном сигнале иногда трудно определить есть полезный сигнал или нет.

    Для приёма сигнала сдвинутого во времени на фоне белого гауссовского шума (белый гауссовский шум "БГС" имеет равномерную плотность распределения) n (t) т.е. y (t) = + n (t), отношение правдоподобия при приёме сигнала известной формы имеет вид:

    где No - спектральная плотность шума.

    Поэтому приходим к выводу, что оптимальная обработка принимаемых данных - суть корреляционный интеграл

    Полученная функция представляет собой ту существенную операцию, которую следует выполнить над наблюдаемым сигналом с тем, чтобы оптимальным (с позиции критерия минимума среднего риска) образом принять решение о наличии или отсутствии полезного сигнала.

    Не вызывает сомнений тот факт, что данная операция может быть реализована линейным фильтром.

    Действительно, сигнал на выходе фильтра с импульсной характеристикой g (t) имеет вид:

    Как видно, при выполнении условия g (r-x) = K ×S (r- t) эти выражения эквивалентны и тогда после замены t = r-x получаем:

    где К - постоянная, а to - фиксированное время, при котором наблюдается выходной сигнал.

    Фильтр с такой импульсной характеристикой g (t) ( смотрите выше) называется согласованным.

    Для того чтобы определить импульсную характеристику необходимо сигнал S (t) сместить на влево, т.е. получим функцию S (tо + t), а функцию S (tо - t) получить путём зеркального отображения сигнала относительно оси координат, т.е. импульсная характеристика согласованного фильтра будет равна входному сигналу, и при этом получаем на выходе согласованного фильтра максимальное отношение "сигнал-шум".



    При нашем входном сигнале для построения такого фильтра необходимо сначала создать звено формирования одного трапецеидального импульса схема, которого изображена на (рис.9).

    Рис. 10. Звено формирования радиоимпульса с заданной огибающей.

    На вход звена формирования радиоимпульса с заданной огибающей (см. рис.9), подаётся сигнал огибающей радиосигнала (в нашем случае трапеция).

    В колебательном звене формируется гармонический сигнал с несущей частотой wо (в нашем случае 1,11МГц), поэтому на выходе этого звена имеем гармонический сигнал с частотой wо.

    С выхода колебательного звена сигнал подаётся на сумматор и на звено линии задержки сигнала на Ti (в нашем случае Ti =15 мкс), а с выхода звена задержки сигнал подаётся на фазовращатель (он нужен для того чтобы после окончания импульса отсутствовал радиосигнал на выходе сумматора).

    После фазовращателя сигнал тоже подаётся на сумматор. На выходе сумматора, наконец, имеем трапецеидальные радиоимпульсы с частотой радиозаполнения wо т.е. сигнал g (t).



    Поскольку нам необходимо получить когерентную пачку из 9 трапецеидальных видеоимпульсов то необходимо сигнал g (t) подать на звено формирования такой пачки схема, которой имеет вид как на (рис 10):

    Рис. 11. Звено формирования когерентной пачки.

    На вход звена формирования когерентной пачки подаётся сигнал g (t), который представляет собой трапецеидальный радиоимпульс (или последовательность трапецеидальных радиоимпульсов).

    Далее сигнал идёт на сумматор и на блок задержки, в котором реализуется задержка входного сигнала на период следования импульсов в пачке Tip умноженный на номер импульса минус единица, т.е. (N-1), а с выходабока задержки снова на сумматор.

    Таким образом, на выходе звена формирования когерентной пачки (т.е. на выходе сумматора) имеем прямоугольную когерентную пачку трапецеидальных радиоимпульсов, что и требовалось реализовать.

    Заключение

    В ходе работы были проведены соответствующие расчеты и построены графики по ним можно судить о сложности обработки сигналов. Для упрощения математический расчет проводился пакетах MathCAD 7.0 и MathCAD 8.0. Данная работа является необходимой частью учебного курса, чтобы студенты имели представления об особенностях применении различных импульсных радиосигналов в радиолокации, радионавигации и радио телеметрии, а также могли спроектировать оптимальный фильтр тем самым, внеся свой скромный вклад в “борьбе" за информацию.

    Перечень условных обозначений

    - частота радиозаполнения;

    w - частота

    Т, ( t) - временной сдвиг;

    Тi - длительность радиоимпульса;

    Tip - период следования радиоимпульсов в пачке;

    N - число радиоимпульсов в пачке;

    t - время;

    Библиографический список

    1. Баскаков С.И. "Радиотехнические цепи и сигналы: Учебник для вузов по спец. "Радиотехника"". - 2-е изд., перераб. и доп. - М.: Высш. шк., 1988 - 448 с.: ил.

    2. "АНАЛИЗ РАДИОСИГНАЛОВ И РАСЧЁТ ХАРАКТЕРИСТИК ОПТИМАЛЬНЫХ СОГЛАСОВАННЫХ ФИЛЬТРОВ: Методические указания к курсовой работе по курсу "Теория радиотехнических сигналов и цепей""/ Киберниченко В.Г., Дороинский Л.Г., Свердловск: УПИ 1992.40 с.

    3. "Усилительные устройства": Учеб: пособие для вузов. - М.: Радио и связь, 1989. - 400 с.: ил.

    4. Букингем М. "Шумы в электронных приборах и системах"/ Пер. с англ. - М.: Мир, 1986




    1) Мгновенное значение импульсного сигнала(U(t)) аналогично синусо-идальному можно определить c помощью приборов, представляющих форму сигнала.

    2) Амплитудное значение U n характеризует наибольшее значение мгно-венного напряжения в интервале периода Т. Период исследования импу-льного сигнала определяется по точкам на уровне 0,5 амплитуды.

    3) Время нарастания переднего фронта t ф + -- интервал времени между точками, соответствующими 0,1U m и 0,9U m . Передний фронт харак-теризует степень нарастания сигнала, т.е. как быстро импульс от уровня 0 достигает U m . В идеале t ф + должно равняться нулю, но на практике ни-когда этот интервал не равен нулю, t ф » 10 нС.

    4) Время спада (заднего фронта) t ф - определяется аналогично от уровня 0,1 до 0,9 у амплитуды, но на спаде импульса. Время заднего фронта, как и переднего, также конечно. Его стремятся уменьшить, поскольку спад влияет на длительность импульса t u .

    5) Длительность импульса t u – интервал времени, определяемый на уровне 0,5 амплитуды от переднего до заднего фронта. Важное значение для сигнала имеет отношение периода следования импульса к длительности импульса, называемого скважностью. Чем выше скважность, тем большее число раз импульс ²укладывается² в период следования T/m = q.

    Частным случаем импульсного сигнала является ²меандр², у кото-рого скважность q = 2. Скважность косвенно указывает на энергетическую характеристику сигнала: чем она больше, тем меньшую энергию за период переносит сигнал. Поскольку сигнал характеризуется различными уровнями напряжения для него также применяют: действующее значение напряжения, аналоговая форма; средневыпрямленное значение напряжения.

    Для прямоугольных сигналов эти величины оказываются равными. Часто рассматривают энергетическую характеристику - мощность сигнала. Мощность за период P определяется для прямоугольного сигнала как:



    Где P u – мощность импульса, q – скважность

    Мощность импульса может достигать больших величин, при этом средняя мощность оставаться невысокой. Короткими импульсами с большой амплитудой проверяются устройства.

    6) Êîýôôèöèåíò ñïàäà âåðøèíû Y =

    Спектр импульсных сигналов



    w 0 2w 0 3w 0 4w 0 5w 0 6w 0 t

    Согласно разложения в ряд Фурье периодических сигналов, импульсный сигнал также представляют состоящим из суммы множества составляющих. В первую очередь, это основная гармоника – частота исследования сигнала и ее кратные составляющие. Но вместе с ними в это разложение входит множество других гармоник, не кратных основной. Это гармоники меньшие основной и комбинации этих гармоник с основными. Такое представление показывает, что импульсного сигнала имеет широкую полосу. Все по одной линии.


    Низкие частоты обеспечивают в форме импульса крышу. Чем меньше эти составляющие, тем меньше спад вершины импульса. Вместе с этим, скваж-ность нарастания и спада импульса зависит от высокочастотных составляющих в разложении сигнала. Чем больше частота, тем круче фронты импульса. Для передачи сигнала необходимо устройство, имеющее одинаковые коэффициенты передачи во всем диапазоне спектра импульса. Но такое устройство технически выполнить сложно. Поэтому всегда решают задачу: спектр выбрать поуже, а параметр импульса получше.

    Основной критерий оптимизации: скважность передачи импульсных сигналов. Но сегодня в реальных системах она достигает 100Мбод = 10 8 единиц информации в сек.

    Импульсные сигналы стремятся передать положительные полярности, так как полярность определяется питающим напряжением, хотя применяют импульсы отрицательной полярности для передачи информации. При измерении величины напряжения импульсных сигналов обращают внимание на прибор: пиковый вольтметр (амплитудный), средних значений, среднеквадратичных значений. Средние и среднеквадратичные значения напряжения зависят от длительности импульса. Пиковое значение – нет. Передача импульсных сигналов по проводным линиям приводит к заметному искажению сигналов: спектр сигнала сужается в ВЧ части, поэтому фронт и спад импульса увеличиваются.






    По природе любые электрические сигналы делят на 2 группы: детер-минированные, случайные.

    Первые в любой момент времени могут быть описаны конкретным зна-чением (мгновенным значением U(t)). Детерминированные сигналы соста-вляют большинство.

    Случайные сигналы. Природа их появления непредсказуема заранее, поэтому их нельзя вычислить, обозначить в конкретной точке. Такие сигналы можно лишь исследовать, провести эксперимент, по которого опре-делить вероятностные характеристики сигналов. В энергетике к таким сигналам относят: помехи электромагнитных полей, искажающие основной сигнал. Дополнительные сигналы появляются при разрядах полных или частичных между линиями передач. Случайные сигналы анализируют, измеряют с помощью вероятностных характеристик. С точки зрения погрешностей измерения, случайные сигналы и их влияние относят к дополнительным случайным погрешностям. При этом если их величина на порядок меньше основных случайных, их из анализа можно исключить.



     


    Читайте:



    Используем малоизвестные функции Google, чтобы найти сокрытое

    Используем малоизвестные функции Google, чтобы найти сокрытое

    Даже от лучшего контента толку будет мало, если не донести информацию о его существовании своей целевой аудитории. Именно поэтому, посев контента...

    Не работает дисплей планшета – причины и ремонт

    Не работает дисплей планшета – причины и ремонт

    С дисплеем планшета может возникнуть ряд проблем. При этом, не имеет значения срок его эксплуатации. Причин, ведущих к неприятным последствиям, ещё...

    Что такое расширение файла JAD?

    Что такое расширение файла JAD?

    Файл.JAD обозначает файл дескриптора приложения Java, который используется для описания файла.JAR. И файл.JAR, и файл.JAD требуются виртуальной...

    Бесплатные программы для Windows скачать бесплатно Бесстрастный download php

    Бесплатные программы для Windows скачать бесплатно Бесстрастный download php

    Скачать бесплатный Довланд Мастер можете бесплатно по ссылке с официального сайта на русском языке под любой Виндовс XP, 7, 8, 10. Программа...

    feed-image RSS